Смекни!
smekni.com

Принципи обробки кольорових факсимільних зображень (стр. 1 из 3)

Вступ

Сьогодні важко знайти організацію, яка не використала б в своїй роботі факсимільний зв'язок. Телефакс є найпопулярнішим засобом для оперативного обміну інформацією, представленою у вигляді документів. Перша і головна його гідність – можливість передачі документа в будь-яку точку земної кулі за одну хвилину. Ніяка поштова служба не може забезпечити такої оперативності. Друге – набагато менше витрати на пересилку, в порівнянні з вартістю послуг кур'єра або тієї ж пошти. Третє – простота. Встановивши з'єднання, можна відправити документ натисненням однієї клавіші. Якщо ж говорити про якість, то сучасні стандарти факсимільного зв'язку забезпечують, при використанні хороших телефонних ліній, передачу зображення, цілком зіставного з оригіналом.

Метою даної роботи є розглянути основні способи кодування і прийому/передачі кольорових зображень у факс-системах.

Методи перетворення і передачі зображення

Передача зображення є найбільш важкою проблемою, оскільки людське око з інформаційної точки зору незрівнянно досконало за вухо.

У 1902 році Артур Корн (Німеччина) запатентував систему фотоелектричного сканування зображення, а в 1910 році заробив перший міжнародний факсимільний зв'язок Берлин-Париж-Лондон. До 60-х років цього століття ринок факсимільної апаратури був обмежений.

У 1968 році CCITT розробила рекомендації по факсимільному устаткуванню, яке було здатне передавати сторінку за 6 хвилин при дозволі 3.85 ліній на мм. Пізніше в 1976 році аналогова факсимільна техніка була покращувана. Це дозволило скоротити час передачі сторінки до 3 хвилин. У 1980 році розроблений стандарт для цифрових факс-машин (група 3), тут вже передбачається стискування інформації, що дозволяє скоротити час передачі сторінки до 1 міни при швидкості передачі 4800 бит/с. Слід мати на увазі, що стискування інформації у поєднанні з помилками пересилки може приводити до невпізнання зображення локальному або повному. З цієї причини число ліній сканування, які використовуються при обробці зображення, з метою стискування може варіюватися (1–4) і визначається в результаті діалогу між відправником і одержувачем, а передача кожній скан-линии завершується досить довгим кодом, призначеним для надійного розпізнавання завершення рядка сканування, а також корекції помилок. Факсимільне устаткування групи 3 може і не забезпечувати стискування передаваних (що приймаються) даних. У 1984 році розроблені вимоги до факс-аппаратам групи 4. Система базується на двомірній системі кодування зображення (MMR – Modified Modified Reed).

Факсимільне устаткування поділене на 4 групи. Перша група практично збігається з традиційним фототелеграфним устаткуванням (6 хвилин на сторінку при дозволі 3.85 ліній на міліметр). Динамічній варіації кодової таблиці не передбачено. При цьому для кодування чергової лінії сканування використовуються результати, отримані для попередньої лінії. Слід враховувати, що зона сканування факс-машины більше розміру зображення і завжди є порожні рядки і поля, що надає додаткові можливості для стискування передаваної інформації.

Існує три режими кодування: вертикальний, горизонтальний і прохідний. Останній режим реалізується, коли позиція в еталонному рядку a2 знаходиться зліва від b1 (див. мал. 1; вериткальному і горизонтальному режиму відповідає нижня частина малюнка). При «вертикальному» режимі кодування (a2 праворуч від b1 і |b1a1|<= 3) позиція b1 кодується щодо позиції a1. Відносне положення b1a1 може приймати одне з семи значень V(0), VR(1), VR(2), VR(3), VL(1), vL(2) і VL(3) (див. табл. 1). Індекси r і l указують на те, що b1 знаходиться справа або зліва по відношенню до a1, а число в дужках позначає відстань b1a1. Якщо використовується «горизонтальний» режим кодування (a2 праворуч від b1 і |b1a1|>3), довжини b0b1 і b1b2 відображаються за допомогою кодової комбінації H+M(b0b1)+M(b1b2). H є кодом 001, узятий з двовимірної кодової таблиці. M(b0b1) і M(b1b2) є кодовими словами, які характеризують довжину і колір субрядків b0b1 і b1b2 відповідно.

Рисунок 1. Режими кодування: прохідній; вертикальний; горизонтальний


Факс-устаткування групи 4 може підтримувати так званий розширений режим, коли частина робочого поля кодується без використання алгоритмів ущільнення інформації (як правило, це ділянки, де спроба стискувати або нічого не дає, або навіть приводить до збільшення об'єму передаваних даних). Устаткування цією група використовує на канальному рівні процедури HDLC LAPB. Смугою пропускання каналу, до якого підключається таке устаткування, що рекомендується, є 64 Кбіт/с.

Таблиця 1. Кодування елементів зображення

Режим кодування Елементи, що підлягають кодуванню Позначення Код
Прохід a1a2 p 0001
Горизонтальний b0b1, b1b2 h 001+m(b0b1)+m(b1b2)
Вертикальний b1 під a1 b1a1=0
b1 праворуч від a1 b1a1=1
b1a1=2
b1a1=3
b1 зліва від a1 b1a1=1
b1a1=2 b1a1=3
v(0)
vr(1)
vr(2)
vr(3)
vl(1)
vl(2)
vl(3).
1
011
000011
0000011
010
000010
0000010
0000001 ххх

Перед початком передачі термінали повинні обмінятися своїми ідентифікаторами (TID – terminal identification). Останнім часом з'явилися факс-аппараты, які друкують зображення на звичайний папір з дозволом 300–400 крапок на дюйм. Така схема зручна, але має деякі недоліки. Такі апарати дорогі, друк може початися не раніше, чим буде передана вся сторінка; передавальний апарат може мати нижчий дозвіл, потрібно уміти адаптуватися до будь-якого дозволу, що приводить до того, що швидкість друку зображення при низькому дозволі залишається такою ж низькою, як і при високій.

Відомо, що для коректної передачі кольору потрібно 16 мільйонів відтінків (8 битий на кожну з трьох колірних компонент). Таким чином, для опису картинки на екрані, що містить 575 ліній по 720 пікселів, потрібний 1,240 Мбайта. Для передачі такій інформації по В-каналу ISDN, якщо не використовується стискування, буде потрібно близько 2,5 хвилин. Ця цифра допомагає зрозуміти актуальність проблеми стискування графічної інформації.

Стандарти для уявлення і передачі зображення розробляє Joint Photographic Expert Group (JPEG). Для стискування графічної інформації в даний час використовується дискретне косинусное двомірне перетворення (DCT – Discrete Cosine Transform), яке дає суб'єктивно якнайкращий результат і описується рівнянням:

де v – горизонтальна координата графічного блоку, u – вертикальна, x – вертикальна координата усередині блоку, а у – горизонтальна координата усередині блоку, C(u), C(v)= 1/ для u, v = 0 і З(u), З(v)= 1 інакше. Два члени в квадратних дужках є ядрами перетворення, показаними нижче на рис. 2, а p (x, y) є піксельними даними блоку реального малюнка. Початок координат в обох випадках у верхньому лівому кутку. Процес кодування зводиться до розбиття зображення на блоки 8*8 пікселів і виконанню процедури двомірного DCT для кожного з цих блоків. Отримані коефіцієнти перетворення дискретизують. 64 числа, що характеризують рівень сигналу, перетворюються на 64 коефіцієнти перетворення (амплітуди просторових частот), які добре піддаються процедурі стискування. Діськретізатор округляє коефіцієнти, ця процедура вносить деякі помилки, але зворотне перетворення на приймаючій стороні за рахунок усереднювання частково усуває спотворення, що вносяться. На практиці дискретизатор реалізує декілька складніший алгоритм.

Інтуїтивно метод DCT базується на виявленні того, наскільки вищестоящий блок відрізняється від нижчестоячого. Для реального представлення (стискування) коефіцієнтів перетворення тут також використовуються коди Хафмана.

Рисунок – 2. Графічне представлення двомірного перетворення

DCT забезпечує стискування на рівні 0.5–1.0 біт/піксель при хорошій якості зображення. Стискування вимагає часу, а максимально прийнятним часом затримки при пересилці зображення є 5 секунд. На мал. 3 приведена якісна оцінка чіткості і відповідності оригіналу зображення залежно від величини стискування (DCT). Якщо використовувати швидкість обміну 64 кбит/с, то ступені стискування 0,01 бита на піксель відповідатиме час передачі зображення 0,04 секунд, а стискуванню 10 – час передачі 40 сек.


Рисунок – 3. Якість DCT-изображения для різних значень стискування інформації (картинка має дозвіл 512*512 пікселі; заповнені квадратики відповідають кольоровому зображенню, а незаповнені – чорно-білому)

Відображення графічного образу може виконуватися послідовно (приблизно так, як ми читаємо текст: зліва-направо і зверху-вниз) або з використанням прогресивного кодування (спочатку передається вся картинка з низьким дозволом, потім послідовно чіткість зображення доводиться до максимальної). Останній метод вельми зручний для систем WWW, де проглянувши зображення низького дозволу, можна відмінити передачу даних поліпшуючих чіткість і тим самим заощадити час. Добре розпізнаване зображення виходить при стискуванні близько 0,1 бита на піксель. Окрему проблему представляє друк зображення. Тут півтони реалізуються за допомогою варіації розміру елементів зображення. При кольоровому друці окрім RGB уявлення використовується CMYC система (Cyan, Magenta, Yellow і Black) і відповідні картріджи. Чорний колір в RGB соответствет коду 0,0,0, а в CMIK – 75%; 68%; 67% і 90%

Оборотне перетворення колірної гамми: колірне кодування текстурованих сірих зображень

Якщо кольоровий документ пересилається за допомогою факсу, передавального лише чорно-біле зображення, чи означає це, що колір оригіналу безповоротно втрачений?

«Це не зовсім так», – вважає Карен М. Браун (Karen M. Braun), науковий співробітник корпорації Xerox по технологіями передачі зображення, яка брала участь в розробці нового способу кодування документів. Цей спосіб вперше дозволив відновлювати колірну гамму оригіналу на основі чорно-білого зображення, віддрукованого на монохромному принтері, факсі або копире.