Смекни!
smekni.com

Проектирование круглосуточной оптико-телевизионной системы (стр. 1 из 12)

Оглавление.

1. Введение

2. Научно-исследовательская часть

2.1 Обоснование выбора оптической схемы КТВС

2.2 Габаритный расчет и светоэнергетический расчет

2.3 Аберрационный расчет объектива НУТВ

Вывод

3. Конструкторская часть

3.1 Анализ основных вариантов исполнения КТВС

3.2 Описание конструкции КТВС и ее узлов

Вывод

4. Технологическая часть

4.1 Общие сведения об оптических волокнах и изготовляемых из них деталях

4.2 Изготовление МКП

4.3 Изготовление ВОЭ180

4.4 Изготовление вакуумного блока ЭОП

Вывод

5. Организационно-экономическая часть

5.1 Определение сроков проведения НИОКР

5.2 Расчёт стоимости проведения НИОКР

5.3 Технико-экономическое обоснование

Вывод

6. Охрана труда и экология

Вывод

7. Заключение


1. Введение

Российская Федерация является одним из самых богатых морскими биоресурсами государств. Качество продуктов, добытых в Каспийском и дальневосточных морях, известно во всем мире. Морской промысел приносит существенную прибыль частным и государственным компаниям и, если ведется легально, является весьма доходной статьей местных бюджетов.

Однако в последнее время наблюдается существенный рост нелегального промысла, который не только не приносит дохода государству, но и наносит непоправимый вред окружающей среде.

Двумя основными причинами этого явления являются несовершенство законодательства, а также разница в технической оснащенности т. н. "браконьеров" и сотрудников правоохранительных органов. Первые пользуются новейшими техническими достижениями:

· системы спутниковой навигации;

· акустические приборы для поиска рыбы;

· оптические приборы наблюдения за окружающей обстановкой;

В результате при приближении сотрудников правоохранительных органов преступники сбрасывают в море нелегально добытую живность и несоответствующую нормам снасть. Юридически доказать факт незаконного промысла становится практически невозможно.

Эта неблагоприятная ситуация лишь усугубляется в ночных условиях, когда заниматься браконьерством можно почти безнаказанно.

Ясно, что назрела необходимость оснащения сотрудников правоохранительных органов наблюдательными комплексами, которые позволили бы:

· скрытно (с большого расстояния) вести наблюдение за рыболовецким судном;

· распознавать название судна, нанесенное на его борт;

· определять географические координаты судна;

· проводить видеосъемку обстановки на палубе;

· работать в круглосуточном режиме.

Проводящиеся в данный момент в мире научные разработки в области:

· технологии изготовления видеокамер на основе матричных приемников излучения (МПИ) с пространственно-зарядовой связью (ПЗС);

· технологии изготовления усилителей яркости – электронно-оптических преобразователей;

· технологии изготовления быстродействующих микропроцессоров для цифровой обработки информации и управления приборами;

· технологии изготовления микрогироскопов и микроакселерометров для создания на их основе миниатюрных систем позиционирования;

· технологии автоматизированного расчета оптических систем;

· развития спутниковых систем навигации (в том числе отечественных) позволяют создать такой комплекс.

В данном дипломном проекте приведено техническое обоснование оптико-электронной системы комплекса.

Конструкторские проработки предусматривают такой подход к проектированию системы, который обеспечит технические требования при минимальной стоимости. По своему принципу построения разработанная в дипломном проекте круглосуточная оптико-телевизионная система (КТВС) является модульной, базируется на трех основных узлах:

· низкоуровневая телевизионная система (НУТВ), имеющая в своем составе ЭОП;

· дневная телевизионная система (ДТВ);

· лазерная осветительная система (ЛОС) на основе пяти полупроводниковых лазеров.

Данная КТВС располагается на поворотном устройстве, оснащенном бесплатформенной инерциальной системой (БИНС), которая определяет угловые координаты цели относительно комплекса.

ЭОП работает в режиме стробирования. Это позволяет не только уменьшить помеху обратного рассеяния (что крайне важно в плохих погодных условиях), но и использовать НУТВ как дальномер, определяющий расстояние до цели.

В системе цифровой обработки изображения применен алгоритм распознавания надписей, существенно повышающий надежность распознавания.

Спутниковая система навигации при известных географических координатах комплекса, относительных угловых координатах цели, расстоянии до цели может определить ее географические координаты.

Все эти данные выводятся на монитор, где их наблюдает человек-оператор.

Таким образом, КТВС – это сложный оптико-электронный прибор, выполняющий задачи в составе наблюдательного комплекса. Дипломный проект посвящен созданию современной КТВС, не уступающей по своим характеристикам зарубежным аналогам.

В дипломном проекте на тему "Проектирование круглосуточной оптико-телевизионной системы" содержатся следующие части: научно-исследовательская, конструкторская, технологическая, организационно-экономическая, охрана труда и экология.


2. Научно-исследовательская часть

2.1 Обоснование выбора оптической схемы КТВС

Обоснование выбора оптической схемы объектива ночного канала

Задача объектива ночного канала – осуществить оптическое сопряжение плоскости объекта и плоскости фотокатода ЭОП.

Предметная плоскость находиться ориентировочно на расстоянии

L = 7000 м от первой поверхности объектива, а фокусное расстояние (см. "Габаритный расчет") равно f’= 1,307 м. Согласно известному критерию L ≥ 20 f’ можно считать, что предмет находится в бесконечности, а следовательно объектив является фотографическим.

Однако классическая схема такого объектива имеет существенный недостаток – продольные габариты объектива более чем в 2 раза превышают заданные в ТЗ габариты всего прибора. Рациональным решением будет введение в оптическую схему зеркальных поверхностей.

При относительном отверстии 1 : 5,2 (см. "Габаритный расчет") возникнут аберрации, для компенсации которых понадобятся линзовые элементы.

В итоге получим тип оптической схемы: зеркально-линзовый фотографический объектив.

Обоснование выбора оптической схемы объектива переноса ночного канала

Задача объектива ночного канала – осуществить оптическое сопряжение плоскости ПЗС матрицы и плоскости люминофорного экрана ЭОП.

Очевидно, что тип оптической схемы в данном случае: проекционный объектив.

Обоснование выбора оптической схемы объектива дневного канала

При относительном отверстии 1 : 10 и меньшем в 2 раза, по сравнению с объективом ночного канала, фокусном расстоянии рационально применить схему: двухлинзовый склеенный фотографический объектив.

Обоснование выбора оптической схемы коллиматора лазерной системы подсветки

В связи с тем, что расчет оптических систем при гауссовом распределении энергии в поперечном сечении пучка лучей существенно более сложен, чем при равномерном, доверим выбор оптической схемы специальному ПО, разработанному на кафедре РЛ2 МГТУ им. Н. Э. Баумана.

В результате получим: двухлинзовый склеенный объектив в обратном ходе лучей (коллиматор) без дефокусировкиотносительно перетяжки лазерного пучка.

2.2 Габаритный расчет и светоэнергетический расчет

Габаритный расчет

Габаритный расчет оптической схемы НУТВ

1) Определение фокусного расстояния объектива.

Найдем размер изображения ПЗС матрицы на фотокатоде ЭОП.

(1)

(2)

Где

Ver, gor – вертикальная и горизонтальная стороны изображения матрицы соответственно,

lv = 4,8 мм – длина вертикальной стороны матрицы,

lh = 6,4 мм – длина горизонтальной стороны матрицы,

Г = -0,46х – линейное увеличение объектива переноса (см. ниже).

Линейное увеличение ЭОП равно единице и не учитывается.

Определим фокусное расстояние объектива как:

(3),

где

гор = 0,61° - заданное в ТЗ угловое поле оптической системы в горизонтальной плоскости.

Проверим, соответствует ли угловое поле в вертикальном направлении требованиям ТЗ при данном фокусе:

(4),

где

вер = 0,46° - заданное в ТЗ угловое поле оптической системы в вертикальной плоскости.

2) Определение диаметра входного зрачка объектива.

Очевидно, что дальность распознавания будет увеличиваться с увеличением диаметра входного зрачка, и его следует сделать как можно большим. Верхнее ограничение обуславливают технологические возможности, условия коррекции аберраций, массогабаритные рамки. Исходя из этого, примем: Dнутв = 250 [мм].

3) Расчет увеличения объектива переноса.

Диаметр экрана ЭОП равен 18 мм. Изображение ПЗС-матрицы объективом переноса должно быть вписано в экран, чтобы обеспечить комфортное наблюдение.

Размеры матрицы – 6,4 х 4,8 [мм2]. Следовательно, её диагональ равна 8 мм, а увеличение объектива переноса: |Гtr| = 8/18 = 0,46(5)

Габаритный расчёт оптической схемы дневного канала.

1) Найдем фокусное расстояние объектива.

В данном случае изображение ограничивается полевой диафрагмой, геометрически являющейся входным окном самой ПЗС матрицы размером 6,4 х 4,8 мм2.

Проведя расчет, аналогичный п. 2.2.2.1, получим

мм.

Примем

= 600 мм.