∆α не превышает 0,05 дБ.
Затухание на участке регенерации определяется по формуле (2.7)
(2.7)где Lр – длина регенерационного участка;
nн– количество неразъемных соединений на участке.
Количество разъемных соединений ОВ на всех участках будет разное. Все 16 ОВ (на проектируемом участке) заводятся на следующих железнодорожных узлах связи: Мичуринск, Кочетовка, Грязи Воронежские, Тамбов, Никифоровка, Никольское, Избердей (рис.1.3). При расчете максимальной длины регенерационных участков необходимо учитывать, что каждый из перечисленных узлов связи добавляет два разъемных соединения.
Характеристика участка Грязи Воронежские – Мичуринск:
- энергетический потенциал аппаратуры Э = 30дБ;
- количество разъемных соединителейnp = 6;
-длина регенерационного участка Lр = 59 км;
- количество сварных соединений nн =15.
Произведем расчет для участка Грязи Воронежские – Мичуринск.
Lр < 70,85 км;
Затухание на данном регенерационном участке определяется согласно формуле (2.7)
= 59·0,22 + 0,1·15 + 6·0,5 = 17, 48 дБХарактеристика участка Мичуринск - Тамбов:
- энергетический потенциал аппаратуры Э = 30дБ;
- количество разъемных соединителейnp = 4;
-длина регенерационного участка Lр = 66 км;
- количество сварных соединений nн =17.
Произведем расчет для участка Мичуринск - Тамбов.
Lр < 74,24 км;
Затухание на данном регенерационном участке определяется согласно формуле (2.7)
= 66·0,22 + 0,1·17 + 4·0,5 = 18, 22 дБХарактеристика участка Кочетовка – Мичуринск:
- энергетический потенциал аппаратуры Э = 30дБ;
- количество разъемных соединителейnp = 2;
-длина регенерационного участка Lр = 9 км;
- количество сварных соединений nн =3.
Произведем расчет для участка Кочетовка – Мичуринск.
Lр < 77,63 км
Затухание на данном регенерационном участке определяется согласно формуле (2.7)
= 9·0,22 + 0,1·3 + 2·0,5 = 3,28 дБНа всех регенерационных участках соблюдается условие:Lр <
, следовательно нет необходимости устанавливать дополнительное оборудование для усиления сигнала на железнодорожных узлах связи Никифоровка, Никольское, Избердей (рис.1.3).2.6 Разработка схемы подключения проектируемого оборудования к устройствам электропитания
Проектируемое оборудование необходимо подключить к устройствам электропитания. Схемы электропитания четырех узлов связи достаточно похожи, поэтому будет рационально рассмотреть один железнодорожный узел связи станции Тамбов (рис.2.14).
Электропитание осуществляется по двум раздельным линиям (фидерам) от двух независимых источников внешних сетей переменного тока. В качестве третьего независимого источника переменного тока предусматривается установка в доме связи автоматизированного дизель-генератора (ДГА). Поскольку аппаратура связи не допускает даже кратковременных перерывов питания, возникающих, например при переключении фидеров, то ДГА дополняется аккумуляторной батареей [7], емкость которой рассчитывается исходя из электропитания аппаратуры связи в аварийных условиях в течение одного часа.
Гарантированное питание обеспечивается устройством ВРЩ (вторичный распределительный щит). В помещении Транстелекома «Мультиплексорная», также существует дополнительный разъем для подключения ДГА. К негарантированному питанию подключается кондиционеры, пятьдесят процентов осветительных устройств и розеток с напряжением питания 220 вольт.
Выпрямительные устройства «NTX» обеспечивают напряжение постоянного тока 48 вольт. Аккумуляторные батареи включаются по способу буферной работы с выпрямителями в режиме непрерывного подзаряда.
Устройство DSLAM «SI2000» питается от источника постоянного тока 48 вольт. Мною принято решение подключить DSLAM к аккумуляторной батарее, которая работает совместно с устройством NTX4031.5-540.
Устройство Cisco 7604 питается от источника напряжения переменного тока 220 вольт. Для исключения кратковременных перерывов питания устройства, его необходимо подключить к аккумуляторной батарее, которая находится в помещении «Мультиплексорная». Это подключение возможно осуществить с помощью инвертора «Штиль PS48/700» ( 48 вольт, 700 ватт). Данное устройство крепится в существующей 19” стойке.
Мною принято решение использовать все силовые кабели марки ВВГнг-LS. Это силовой медный кабель, нераспространяющий горение. В случае возгорания обеспечивает пониженное выделение дыма и газа. Если использовать любой другой кабель, то его необходимо заключать в гофрированную трубу из полипропилена.
3 ОХРАНА ТРУДА
3.1 Анализ потенциальных опасностей и вредностей на железнодорожных узлах связи
Анализ травматизма среди лиц, работающих с аппаратурой связи, показывает, что на первом месте находятся случаи, связанные с воздействием электрического тока на человека.
При производстве измерений линий связи возможно воздействие на работника атмосферных разрядов, а также постороннего напряжения. В процессе измерений сам прибор может выдавать в линию (например при измерении изоляции линии связи) напряжение постоянного или переменного тока. Поэтому работник, проводящий измерения, может поразить электрическим током себя или работника, находящегося на другом конце линии. Вызывное напряжение автоматических телефонных станций составляет от 80 до 110 вольт.
Электропитание узлов связи осуществляется от трехфазного источника переменного тока с линейным напряжением 380 вольт.
Работы в линейно-аппаратных залах и в других помещениях могут производиться на высоте.
Возможны два случая неисправностей, в результате которых человек может быть поражен электрическим током: наличие оголенных проводов и контактов; пробой напряжения на корпус электрооборудования, из-за повреждения изоляции. В обоих случаях человек окажется под фазным напряжением сети.
При коротком замыкании возникает электрическая дуга.
3.2 Влияние электрического тока на организм человека
Напряжения и токи прикосновения представляют собой основные опасные факторы электромагнитного поля (ЭМП) электроустановок при их эксплуатации.
Исход опасного воздействия ЭМП на человека при случайном прикосновении к токоведущим частям электрооборудования или частям, которые при нарушении изоляции могут оказаться под напряжением ЭМП, может быть различным. В одних случаях прикосновение человека к указанным частям электрооборудования будет сопровождаться прохождением через его тело малых токов и не будет иметь опасных последствий, в других — токи могут достигать значений, способных вызвать электрическую травму и даже смертельное поражение.
С точки зрения физиологического действия на организм человека следует различать два уровня напряжений и токов, при которых происходят существенно различающиеся явления, сопровождающие протекание тока через тело человека при случайных прикосновениях, а именно:
-высокий уровень — разрушающее тонкую структуру тканей действие (тепловое и электролитическое разрушение), вызывающее электрический пробой живой ткани с образованием узкого канала, по которому протекает весь ток, сопровождающееся тяжелыми ожоговыми повреждениями конечностей в месте контакта с электроустановкой, характеризующееся напряжениями выше 600—1000 В и токами более 500 мА;
-низкий уровень — раздражающее и болевое действие, характеризующееся напряжениями прикосновения, не превышающими 600 В и токами менее 500 мА, протекающими по нервным и мышечным тканям организма.
Наличие двух уровней физиологического действия напряжений прикосновения и токов, по существу, явилось причиной разделения ЭУ в отношении мер безопасности на ЭУ до 1000 В и выше.
Действие электрического тока на организм человека проявляется ожогами в месте прикосновения и особенно при возникновении электрической дуги.
Наиболее опасное последствие для жизнедеятельности организма — реакция сердечно-сосудистой системы на действие тока прикосновения промышленной частоты.
Деятельность сердца легко нарушается под влиянием внешнего электрического воздействия, но в отличие от дыхания она не восстанавливается самостоятельно после прекращения протекания тока прикосновения.
Степень поражения нервно-мышечного аппарата сердечно-сосудистой системы зависит не только от продолжительности, но и от момента воздействия тока по отношению к периоду полного цикла сердечной деятельности (кардиоцикла).
В отличие от переменного тока постоянный ток вызывает у человека болевые ощущения в суставах. По мнению некоторых исследователей, исход электрической травмы в электроустановках постоянного тока при токе прикосновения в несколько десятков миллиампер зависит от возникновения болевого шока, который представляет собой реакцию нервной системы организма человека на боль, которая, в свою очередь, может привести к остановке сердца и дыхания.
Действие переменного электрического тока промышленной частоты низкого уровня, вызывающего специфическое раздражающее действие на организм человека, по реакциям организма при протекании тока может характеризоваться рядом пороговых уровней: