Смекни!
smekni.com

Радиоактивные и радиационные методы неразрушающего контроля (стр. 2 из 2)

В зависимости от используемого излучения различают несколько разновидностей промышленной радиографии: рентгенографию, гаммаграфию, ускорительную и нейтронную радиографию.

Промышленная радиоскопия - метод получения с помощью флуорисцирующих экранов, электронно-оптических преобразователей, оптических усилителей и телевизионных систем видимого динамического изображения внутренней структуры изделия, просвечиваемого ионизирующим излучением. Чувствительность этого метода несколько меньше, чем радиографии. К числу его преимуществ относятся повышенная достоверность получаемых результатов благодаря возможности стереоскопического видения дефектов и рассмотрения изделий под разными углами, экспрессность и непрерывность контроля.

Рис..4. Классификация методов РНК по способу регистрации.

Радиометрическая дефектоскопия - метод получения информации о внутреннем состоянии контролируемого изделия, просвечиваемого ионизирующим излучением, в виде электрических сигналов.

Этот метод обеспечивает наибольшие возможности автоматизации процесса контроля и осуществления автоматической обратной связи при контроле технологического процесса изготовления изделий. По чувствительности этот метод не уступает радиографии. Детекторами излучения здесь являются различного рода счётчики, ионизирующие камеры, электронные умножители.

Различают три способа регистрации прошедшего через объект излучения:

· счётный или токовый, когда регистрируется число частиц, прошедших через материал или отражённых от него;

· энергетический, когда регистрируется суммарная энергия частиц, прошедших через объект или отражённых от него;

· спектрометрический, когда из всех частиц, прошедших через объект или отражённых от него, регистрируются частицы только в определённом энергетическом интервале.

К аппаратуре радиометрического контроля относят радиационные толщиномеры, дефектоскопы с аналоговой записью местоположения дефектов на координатную бумагу и др.

Рентгеновская микроскопия. Среди всех видов измерений, которые когда-либо использовались для исследования микроструктуры рентгеновские лучи занимают особое место в силу следующих свойств. Они обладают большой проникающей способностью и сравнительно небольшим разрушающим воздействием на объект (в отличие от электронной и ионной микроскопии). Им не нужны вакуумные условия, толщина образцов, изучаемых на прсвет может быть довольно большой, они инертны к магнитным и электрическим полям, у них ничтожно малое преломление в различных средах.

К методам рентгеновской микроскопии относятся контактная микроскопия (микрорадиография), рентгенорадиография, рентгеновская топография, рентгеновский микроанализ, рентгенотелевизионная микроскопия.

На рис. 5 представлена схема проекционного рентгеновского микроскопа.

Рис. 5. Рентгеновский проекционный микроскоп

1 - электронная пушка, 2 - конденсорные линзы, 3 - фольга, 4 – фотопластинка

Создаваемый электронной пушкой и формируемый линзами электронный пучок бомбардирует тонкую фольгу из меди или золота, вызывая возникновение мягкого ( > 0.1 нм) рентгеновского излучения. Объект исследования располагается в непосредственной близости от анода. Пройдя сквозь образец, рентгеновские лучи засвечивают фотопластинку, проектируя на ней его увеличенное изображение. Увеличение прибора равно отношению расстояний катод - образец и анод - фотопластинка. Обычно увеличение проекционного метода не превышает 100. При применении светового микроскопа для рассмотрения в последующем рентгеновского микроизображения на фотопластинке общее увеличение составляет 104.

На рис. 6 показаны рентгенотопографические изображения полупроводниковой пластины после проведения различных технологических операций с термическим воздействием. Количество визуализируемых кристаллических дефектов возрастает в пластине после проведения каждой технологической операции, что приводит к снижению коэффициента выхода годных кристаллов с одной пластины при завершении всего процесса создания интегральных схем.

При использовании для контроля ИЭТ ренгенотелевизионных микроскопов (рис.7) обеспечивается высокая производительность процесса контроля, оперативность и разрешающая способность. В рентгенотелевизионном микроскопе теневое изображение объекта попадает на мишень видикона, чувствительного к рентгеновским лучам. Увеличенное изображение объекта рассматривается на телевизионном экране. Современные рентгенотелевизионные микроскопы МТР-6, МТР-7 имеют разрешающую способность 20-30 пар линий на мм и контрастную чувствительность 1-1.5%.

Рис.7. Схема рентгенотелевизионного микроскопа

1 - рентгеновская трубка; 2 - контролируемый прибор; 3 - рентгеновидикон;

4 - видеоусилитель; 5 – ВКУ

В этих приборах полностью обеспечена защита оператора от рентгеновских лучей. Манипуляторы обеспечивают плавное перемещение объекта по 3-м координатам и поворот вокруг трёх независимых осей.

Рентгенотелевизионный контроль особенно целесообразен на стадии разработки компонентов ЭА и СМЭ и их освоения в опытном и серийном производстве (рис. 8 – 10).

Кремний является прозрачным материалом для рентгеновских лучей. На фоне весьма контрастным выглядят золотые выводы, которые можно увидеть даже через корпус прибора. Алюминиевые выводы через корпус прибора не видны. Хороший контраст получают также при контроле никелевых и индиевых электродов. С помощью рентгенотелевизионного микроскопа можно определять следующие дефекты: обрывы золотых монтажных проводов, излишнюю массу термокомпрессионных шариков, пустоты, сдвиги стенок корпуса и т.д.

Применение методов рентгенотелевизионной микроскопии на стадии разработки изделий позволяет в любое время получить информацию о степени совершенства и отработанности конструкции и технологии. На стадии анализа причин брака и отказов изделий Рентгенотелевизионный микроскоп дает возможность, не вскрывая и не нарушая внутреннего состояния изделия, установить причину брака и возможностей физических механизмов отказа.

С помощью рентгенотелевизионного микроскопа можно производить измерение геометрических размеров внутренних элементов диагностируемых радиоэлектронных компонентов. Однако в отличие от оптических измерений геометрических параметров изделий в рентгенотелевизионной микроскопии точность измерений зависит от четкости контуров изображения визуализируемых деталей (т.е. от их относительного контраста и от геометрического размытия границ элементов изображения).

Техника рентгенотелевизионной диагностики благодаря своей информативности быстро шагнула их технических областей применения (рис. 11) в область медицинской диагностики (рис. 12 – 13). Сейчас рентгенотелевизионной техникой оснащаются не только крупные медицинские центры, но районные поликлиники.


ЛИТЕРАТУРА

1. Ермолов И.Н., Останин Ю.Я. Методы и средства неразрушающего контроля качества: Учеб. пособие для инженерно-техн. спец. вузов.-М.: Высшая школа, 2003. - 368 с.

2. Технические средства диагностирования: Справочник / Под общ. ред. В.В.Клюева. - М.: Машиностроение, 2005. - 672 с.

3. Приборы для неразрушающего контроля материалов и изделий. - Справочник. В 2-х кн./ Под ред. В.В.Клюева - М.: Машиностроение, 2006.