Смекни!
smekni.com

Радиопередающие устройства (стр. 3 из 4)

Проходя по соединительным проводам и виткам катушки, ток совершает работу по преодолению активного сопротивления. Часть энергии электрических колебаний превращается при этом в тепло, которое рассеивается (нагреваются током провода катушки и диэлектрик конденсатора). Вследствие этих неизбежных потерь колебания в контуре в течение малых долей секунды затухают (амплитуда их быстро уменьшается, и колебания прекращаются).

Для поддержания незатухающих колебаний в колебательном контуре воздействие внешней периодической э.д.с. должно быть тем сильнее, чем больше разница между этой внешней э.д.с. и собственной частотой контура. Если частота внешней э.д.с. равна собственной частоте контура, амплитуда колебаний в контуре становится максимальной и для поддержания этих колебаний достаточно незначительной энергии. Это явление называется резонансом.

Практически резонанс может быть получен двумя способами: изменением частоты э.д.с. внешнего источника при неизменной частоте собственных колебаний контура и изменением частоты колебаний контура (изменением емкости, индуктивности или того и другого) при неизменной частоте э.д.с. внешнего источника.

Для резонанса характерно получение мощных колебаний при небольшой затрате энергии внешнего источника, необходимой только для компенсации потерь энергии при колебаниях в контуре.

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.

Резонанс напряжений получается тогда, когда источник внешней э.д.с. включен внутрь контура, т.е. соединен последовательно с катушкой индуктивности и конденсатором контура. В этом случае общее реактивное сопротивление контура равно разности индуктивного и емкостного сопротивлений

Х = XL - ХC,

так как индуктивное и емкостное сопротивления оказывают противоположные влияния на ток (напряжения на катушке и на конденсаторе всегда действуют навстречу друг другу).

При равенстве частот источника внешней э.д.с. f и контура fo или индуктивного и емкостного сопротивлений общее реактивное сопротивление контура оказывается равным нулю, а общее сопротивление контура - активному сопротивлению. Благодаря этому ток в контуре становится максимальным, превышая ток источника внешней э.д.c; в Q раз (Q - добротность контура). Добротность контура тем выше, чем меньше активное сопротивление контура.

Если частота внешнего источника э.д.с. больше собственной частоты контура, индуктивное сопротивление преобладает над емкостным. Если частота внешнего источника э.д.с. меньше частоты контура, то емкостное сопротивление больше индуктивного. В любом из этих случаев при отклонении от резонанса полное сопротивление контура возрастает по сравнению с его величиной при резонансе и ток в контуре будет меньше, чем при резонансе.

Резонанс напряжений широко используется в радиотехнике для получения максимального тока и напряжения на контуре при помощи настройки контура на нужную частоту.

Резонанс токов наблюдается при параллельном включении внешнего источника э.д.с. по отношению к индуктивности и емкости контура (источник находится вне контура). Условия получения резонанса токов те же, что и для резонанса напряжений: f = fо и XL = ХC.

Но так как в данном случае весь контур является нагрузкой для внешнего источника э.д.с., внешний источник э.д.с. и контур соединены последовательно. В данном случае при резонансе сопротивление контура максимально, а ток внешнего источника э.д.с. минимален. В самом контуре при резонансе токов происходят сильные колебания, амплитуда которых во много раз (в Q раз) больше, чем амплитуда тока внешнего источника э.д.с.

Резонанс токов используется в радиотехнике в ламповых генераторах и усилителях высокой частоты для создания большого сопротивления для токов определенной частоты.

В колебательном контуре емкость и индуктивность сосредоточены соответственно в конденсаторе и катушке, вследствие чего электрическое и магнитное поля ограничены небольшим объемом. Такой колебательный контур называется замкнутым колебательным контуром. Способность замкнутого колебательного контура излучать электромагнитные волны практически ничтожна. Если раздвигать пластины конденсатора и одновременно увеличивать их размеры (так как при увеличении расстояния между пластинами конденсатора емкость его уменьшается и частота колебаний изменяется), то интенсивность излучения электромагнитных волн в пространство возрастает.

Замкнутый колебательный контур превращается в открытый колебательный контур - антенну следующим образом. Емкость у открытого колебательного контура образована двумя длинными проволоками. Одну из проволок можно зарыть в землю, так как земля является хорошим проводником и может заменить одну из пластин конденсатора, а вторую проволоку следует поднять как можно выше над землей.

Если в антенне происходят колебания электрического тока, то вокруг нее существуют переменные магнитное и электрическое поля. Их совокупность называется электромагнитным полем. Это электромагнитное поле распространяется в пространстве в виде электромагнитных волн. Частота колебаний электромагнитного поля соответствует частоте колебаний тока в антенне, а интенсивность электромагнитного поля - амплитуде тока в антенне. Чем больше интенсивность электромагнитного поля, тем на более далеком расстоянии оно может быть принято радиоприемником.

В практике интенсивность электромагнитного поля часто характеризуют напряженностью Е его электрического поля - величиной э.д.с., которую наводит поле в проводнике длиной 1 м. Если, например, э.д.с., равная 150 мкВ, наводится в проводнике, длина которого 2 м, то напряженность электрического поля в месте приема будет равна 75 мкВ/м.

Радиоприемные устройства

Радиоприемные устройства входят в состав радиотехнических систем связи, т.е. систем передачи информации с помощью электромагнитных волн

Радиоприемное устройство состоит из приемной антенны, радиоприемника и оконечного устройства предназначенного для воспроизведения сигналов. Радиоприемники можно классифицировать по ряду признаков, из которых основными являются: тип схемы, вид принимаемых сигналов, назначение приемника, диапазон частот, вид активных элементов, используемых в приемнике, тип конструкции приемника.

По типу схем различают приемники детекторные, прямого усиления (без регенерации и с регенерацией), сверхрегенеративные и супергетеродинные приемники, обладающие существенными преимуществами перед приемниками других типов и широко применяемые на всех диапазонах приемников.

Принимаемые сигналы служат для передачи сообщений или измерения положения и параметров относительного движения объектов. Сигналы могут передавать сообщения от одного источника или нескольких. Для передачи информации используется изменение одного из параметров сигнала по закону изменения информационного сигнала. Используются: непрерывные колебания с изменяемой (модулированной) амплитудой, частотой или фазой; колебания, скачкообразно изменяемые (манипулированные) по амплитуде, частоте, или разности фаз; колебания с изменяемой амплитудой, частотой или фазой, которые обусловлены видеоимпульсами с амплитудной, широтной, временной, или дельта-модуляцией, а также кодовыми группами видеоимпульсов.

По назначению различают приемники связные, радиовещательные, телевизионные, радиорелейных и телеметрических линий, радиолокационные, радионавигационные и другие. Связные радиоприемники чаще всего служат для приема одноканальных непрерывных сигналов с АМ (с несущей и боковыми полосами), ОБП (однополосной) и ЧМ или дискретных сигналов с амплитудной манипуляцией, частотной или фазовой. Радиовещательные приемники (монофонические) принимают одноканальные непрерывные сигналы с АМ на длинных, средних и коротких волнах и с ЧМ на ультракоротких волнах. Приемники черно-белых телевизионных программ принимают непрерывные сигналы с АМ и частичным подавлением одной боковой полосы частот и звуковые сигналы с ЧМ. Приемники цветных телевизионных программ принимают также сигналы, создающие цветное изображение. Приемники оконечных станций радиорелейных и телеметрических линий обычно предназначены для приема и разделения каналов многоканальных сигналов с частотным и временным уплотнением.

Приемники промежуточных станций радиорелейных линий (наземных и спутниковых) отличаются от приемников оконечных станций тем, что в них не происходит разделения многоканальных сигналов.

Импульсные радиолокационные приемо-передающие станции обычно излучают зондирующие радиоимпульсы с фиксированными периодами следования, длительностью импульсов, амплитудой и несущей частотой. Приемники таких станций служат для приема части энергии зондирующих сигналов, отраженной от целей. Отраженные сигналы могут быть импульсными или непрерывными, причем информация о целях может содержаться в изменении во времени амплитуды (или отношения амплитуд) и частоты (или спектре) сигналов.

Согласно рекомендации МККР (Международного консультативного комитета по радио) спектр радиосвязи делится на диапазоны. Наиболее широко распространенные приемники работают в диапазоне 30 кГц - 300 ГГц (на волнах 10 км - 1мм).

В качестве активных элементов каскадов приемников, работающих на частотах 30 кГц - 300 МГц, используются полупроводниковые приборы и электронные лампы. Предпочтение отдается полупроводниковым приборам благодаря их преимуществам (малые габаритные размеры и масса; низкие напряжения и токи питания; большой срок службы и механическая прочность).