Если вместо мощности множества дефектов записать их число, равное m, тогда предыдущее выражение представляется в более простой форме:
(2.45)Согласно технологии встроенного сервисного обслуживания функциональных модулей цифровых систем на кристаллах, матричный метод восстановления работоспособности на основе решения задачи покрытия имплементируется в кристалл в качестве одного из компонентов I-IP (Infrastructure Intellectual Property), нацеленного на поддержание работоспособности матричной памяти SoC.
Выводы
SoC-микросхемы, в ближайшем будущем, будут составлять более 90% объема кристалла, ориентированного на использование гибких программных средств в ГАС.
Актуальной представляется разработка не только средств быстрого и точного диагностирования, но и создание технологий для осуществления ремонта дефектных ячеек, встроенными средствами сервисного обслуживания в реальном времени и на всех стадиях жизненного цикла изделия. Это позволит существенно уменьшить число выводов чипа, повысить выход годной продукции, уменьшить время выхода изделия на рынок, сократить затраты на сервисное обслуживание, а также исключить внешние средства диагностирования и ремонта.
В процессе написании квалификационной работы бакалавра, была достигнута поставленная цель работы, посредством выполнения следующих этапов:
рассмотрен АЛМ и, соответствующий ему, алгоритм встроенного диагностирования дефектов в функциональных блоках SoC, использующий предварительный анализ ТН в целях уменьшения её объема и последующих вычислений, связанных с построением ДНФ, формирующей все решения по установлению диагноза функциональностей SoC;
выполнена сокращенная инфраструктура сервисного обслуживания функциональностей SoC, отличающаяся минимальным набором процессов встроенного диагностирования в реальном масштабе времени и дает возможность осуществлять сервисы:
тестирование штатных функций на основе генерируемых входных последовательностей ATPG и анализ выходных реакций;
диагностирование с заданной глубиной поиска дефектов путем использования мультизонда стандарта IEEE 1500;
моделирование (Fault Simulation) неисправностей в целях обеспечения выполнения первых двух процедур на основе ТН FDT;
описана мэппинг-модель процесса синтеза дедуктивной структуры, отличающаяся использованием библиотеки дедуктивных компонентов, покрывающих все стандартизованные конструктивы функциональностей, которыми оперирует разработчик, что дает возможность создавать в автоматизированном режиме дедуктивную модель функциональностей цифровой системы на кристалле;
описана мэппинг-модель процесса синтеза тестов, отличающаяся использованием библиотеки встроенных тестовых генераторов для функциональностей DSP SoC, что дает возможность существенно уменьшить время построения тестов, предназначенных для верификации функциональностей и проверки дефектов.
АЛМ восстановления работоспособности памяти основывается на решении задачи покрытия дефектных ячеек резервными элементами путем использования аппарата булевой алгебры. Метод имеет квадратичную вычислительную сложность и может быть аппаратурно реализован как в программном исполнении за пределами кристалла, так и внутри него в виде дополнительного сервисного модуля коррекции дефектов, позволяющего автоматически выполнять восстановление работоспособности элементов памяти в процессе функционирования.
Также в работе рассмотрено априорное задание таблицы неисправностей в виде булевой функции, с точки зрения компактности, которая на конкретном ВЭП трансформируется в компактную запись, определяющую термы ДНФ, как все возможные решения неисправных компонентов, подлежащих ремонту.
Перечень ссылок
1. Хаханов В.И., Хаханова А.В., Литвинова Е.И. Алгебро-логический метод ремонта встроенной памяти SoC // Відмовостійкі системи. – №1. – 2008. – С. 99 – 109.
2. Хаханов В.И., Хаханова И.В. VHDL + Verilog = Синтез за минуты. Харьков: СМИТ, 2007. – 264 с.
3. Zorian Y. What is Infrustructure IP // IEEE Design & Test of Computers. – May – June 2002. P. 5 – 7.
4. Zorian Y., Gizopoulos D. Gest editors’ introduction: Design for Yield and reliability // IEEE Design & Test of Computers. – May – June 2004. – P. 177 – 182.
5. Rashinkar P., Paterson P., Singh L. System-on-chip Verification: Methodology and Techniques, – Kluwer Academic Publishers, 2002. – 393 р.
6. Хаханов В.И. Инфраструктура диагностического обслуживания SoC // Вестник Томского государственного университета. – №4(5). – 2008. – С. 74 – 101.
7. IEEE 1500 Web Site. [Электрон. ресурс]. – Режим доступа: – http: // grouper.ieee.org/groups/1500/.
8. Автоматизация диагностирования электронных устройств / Ю.В. Малышенко и др. / Под ред. В.П. Чипулиса. – М.: Энергоатомиздат, 1986. – 304 с.
9. Shoukourian S., Vardanian V., Zorian Y. SoC Yield Optimization via an Embedded-Memory Test and Repair Infrastructure // IEEE Design and Test of Computers. – 2004. – P. 200 – 207.
10. Zorian Y., Shoukourian S. Embedded-Memory Test and Repair: Infrastructure IP for SoC Yield // IEEE Design and Test of Computers. – 2003. – P. 58 – 66.
11. Парфентий А.Н., Хаханов В.И., Литвинова Е.И. Модели инфраструктуры сервисного обслуживания цифровых систем на кристаллах // АСУ и приборы автоматики. – Вып. 138. – 2007. – С. 83 – 99.
12. Hahanov V., Kteaman H., Ghribi W., Fomina E. HEDEFS – Hardware embedded deductive fault simulation // Proc. volume from the 3-rd IFAC Workshop, Rydzyna, Poland. – 2006. – P. 25 – 29.
13. Youngs L., Paramanandam S. Mapping and Repairing Embedded-Memory Defects // IEEE Design and Test of Computers. – 1997. – P. 18 – 24.
14. Bergeron J. Writing testbenches: functional verification of HDL models. –Springer, 2003. – 512 р.
15. DaSilva F., Zorian Y., Whetsel L. Overview of the IEEE P1500 Standard // ITC International Test Conference. – 2003. – P. 988 – 997.
16. Rossen K. Discrete Mathematics and its Applications. – McGraw Hill, 2003. – 824 p.
17. Бондаренко М.Ф., Кривуля Г.Ф., Рябцев В.Г., Фрадков С.А., Хаханов В.И. Проектирование и диагностика компьютерных систем и сетей. – К.: НМЦ ВО, 2000. – 306 c.
18. Zhong Y., Dropsho S.G., Shen X., Studer A., Ding C. Miss Rate Prediction Across Program Inputs and Cache Configurations // IEEE Trans. on Computers. – 2007. – P. 328 – 343.
19. Hamdioui S., Gaydadjiev G.N., Van de Goor A.J. The State-of-the-art and Future Trends in Testing Embedded Memories // Records IEEE Intern. Workshop on Memory Technology, Design, and Testing, San Jose, CA. – August 2004. – P. 54 – 59.
20. IEEE-1800. IEEE Standard for System Verilog Language. – 2005. – 586 p.
21. Densmore D., Passerone R., Sangiovanni-Vincentelli A. A Platform-Based taxonomy for ESL design // Design & Test of computers. – September – October 2006. – P. 359 – 373.
22. Методические указания к дипломному проекту для студентов специальности 8.091402 «Гибкие компъютерные системы и робототехника» Упоряд. В.В. Токарев, О.М. Цимбал. – Харьков: ХНУРЭ, 2003. – 40 с.
23. Державний стандарт України. ДСТУ 3008-95. Документація. Звіти у сфері науки і техніки. Структура і правила оформлення. Чинний від 01.01.96. – К.:Держстантдарт, 1995. – 60 с.
24. ГОСТ 2.105 – 2001. Единая система конструкторской документации. Общие требования к текстовым документам. – М.: Из-во стантдартов, 2001. – 76 с.
25. Единая система конструкторской документации: Справ. пособ. / С.С. Борушек А.А. Волков, М.М. Ефимова и др. - 2-е изд., перераб. и доп. – М.: Изд-во стандартов, 1989. – 352 с.