Министерство образования и науки Украины
Севастопольский национальный технический университет
Кафедра технической кибернетики
КУРСОВОЙ ПРОЕКТ
по дисциплине «Системы автоматики»
на тему:
«Разработка и исследование системы автоматического регулирования температуры электропечи на базе промышленного регулятора Р-111»
(альбом документов)
Выполнил: ст. гр. А-41з
Брусинов С.Э.
Проверил: профессор
Дубовик С. А.
Оценка: _______________
Дата: « __ » ____________
Подпись _______________
Севастополь
2007
ОПИСЬ АЛЬБОМА
Данный альбом по курсовой работе на тему «Разработка и исследование системы автоматического регулирования температуры электропечи на базе промышленного регулятора Р-111» содержит следующие пункты:
а) техническое задание на 2 листах;
б) пояснительная записка на 25 листах;
в) приложения на 2 листах.
Министерство образования и науки Украины
Севастопольский национальный технический университет
Кафедра технической кибернетики
КУРСОВОЙ ПРОЕКТ
по дисциплине «Системы автоматики»
на тему:
«Разработка и исследование системы автоматического регулирования температуры электропечи на базе промышленного регулятора Р-111»
(техническое задание)
Выполнил: ст. гр. А-41з
Брусинов С.Э.
Проверил: профессор
Дубовик С. А.
Оценка: _______________
Дата: « __ » ____________
Подпись _______________
Севастополь
2007
Севастопольский национальный технический университет
Кафедра _______Технической кибернетики
Дисциплина ____Системы автоматики
Специальность __Компьютеризированные системы, автоматика и управление
Курс ___4 _____Группа ____А-41з ___
на курсовой проект (работу) студента
1 Тема проекта (работы): Разработка и исследование системы автоматического регулирования температуры электропечи на базе промышленного регулятора Р-111
2 Срок сдачи студентом законченного проекта (работы): __.12.2007
3 Исходные данные проекта (работы):рабочая температура Tр = 200°С (Ом); уровень тока
I = 0.5 мА; возмущающее воздействие длительность 10с
4 Содержание расчётно-пояснительной записки (перечень подлежащих, разрабатываемых вопросов): краткое описание исследуемой САУ; построение математической модели объекта управления; синтез регулятора; заключение; библиография; приложения
5 Список графического материала (с точными определениями обязательных чертежей)______________________________________
Дата выдачи задания___21.06.2007
№п/п | Название этапов курсового проекта (работа) | Срок выполнения этапов проекта (работы) | Пометки |
1. | Выдача задания | 21.06.07 | |
2. | Изучение устройства и работы прибора ТРМ-10 | 21.06.07 - 25.06.07 | |
Построение математической модели объекта | 25.06.07 | ||
3. | управления различными методами | 25.06.07 | |
4. | Синтез регулятора методом логарифмических | 25.06.07 | |
амплитудно-частотных характеристик | 25.06.07 | ||
5. | Определение параметров ПИД регулятора | 25.06.07 | |
6. | Проверка показателей качества рассчитанногорегулятора на лабораторном стенде | 25.06.07 | |
7. | Оформление пояснительной записки | 25.06.07 | |
8. | Защита курсового проекта | __.12.07 |
Студент__________________________________
(подпись)
Руководитель_____________________________ Дубовик С. А.
(подпись) (фамилия, имя, отчество)
«_____» ___________________________20___г
Министерство образования и науки Украины
Севастопольский национальный технический университет
Кафедра технической кибернетики
КУРСОВОЙ ПРОЕКТ
по дисциплине «Системы автоматики»
на тему:
«Разработка и исследование системы автоматического регулирования температуры электропечи на базе промышленного регулятора Р-111»
(пояснительная записка)
Выполнил: ст. гр. А-41з
Брусинов С.Э.
Проверил: профессор
Дубовик С. А.
Оценка: _______________
Дата: « __ » ____________
Подпись _______________
Севастополь
2007
СОДЕРЖАНИЕ
Введение
1 Краткое описание исследуемой САУ
2 Построение математической модели объекта управления
2.1 Методы математического описания объектов управления
2.2 Экспериментальные данные
2.3 Построение статической характеристики
2.4 Посторонние математической модели первого порядка
2.5 Посторонние математической модели методом площадей
2.6 Посторонние математической модели методом Ротача
2.7 Выбор окончательной аппроксимирующей модели
3 Синтез регулятора
3.1 Синтез регулятора методом ЛАЧХ
3.2 Определение параметров ПИД-регулятора
3.3 Построение переходной характеристики замкнутой системы
Заключение
Библиография
Приложение А (Результаты снятия переходного процесса объекта управления)
Приложение Б (Результаты снятия переходного процесса замкнутой системы)
ВВЕДЕНИЕ
Задачей автоматического регулирования и управления является автоматическое выполнение в определённой последовательности различных операций и поддержанию величин, характеризующих производственный процесс, на выполнение определённых, заданных значений или принудительное изменение этих величин по заранее описанному закону.
Автоматическое регулирование широко применяется в электрометрии, в электрических печах сопротивлении температурного режима, а также автоматическое управление работой различных механизмов печного аппарата. В индукционных печах и устройствах автоматически регулируется напряжение источников питания и коэффициента мощности установки, длительность отдельных процессов нагрева и их тепловой режим. В дуговых и рудно-термических печах применяют автоматические регуляторы, стабилизирующие их режим и обеспечивающие поддержание их мощности на заданном уровне, ведущие работы по комплексной автоматизации этих печей.
Некоторые из электротермических процессов вообще не могут быть осуществлены в промышленных масштабах без их автоматизации. В других случаях автоматизация снижает брак, улучшает качество изделий, повышает производительность труда, улучшает качество технологических показателей производства, высвобождение обслуживающего персонала и облегчает условия его труда.
В электрических печах сопротивление осуществляется нагрев различных материалов до заданной температуры.
Во многих случаях после нагрева следует период выдержки, необходимый для выравнивания температуры в нагреваемых изделиях или для прохождения в цепях процессов, требующих времени. В связи с этим, основная задача устройств автоматического регулирования температуры состоит в обеспечении нагрева изделий до заданной температуры и в поддержании на заданном уровне с точностью, соответствующей требованиям технического процесса. Эти требования могут изменяться в широких пределах.
Различные электронные печи получили широкое распространение. Их существенные особенности:
· Возможность компенсации большого количества энергии в весьма малых объектах и получение высоких скоростей нагрева и любой необходимой температуры;
· Возможность обеспечения высокой равномерности нагрева изделий;
· Лёгкость регулирования подводимой мощности, а также, следовательно, температуры, лёгкость автоматизации регулирования температурного режима.
В настоящей курсовой работе осуществляется исследование системы автоматического регулирования температуры электропечи на базе промышленного регулятора Р-111.
1 КРАТКОЕ ОПИСАНИЕ ИССЛЕДУЕМОЙ САУ
Функциональная схема САП температуры нагрева металлического сердечника электропечи представлена на рисунке 1.1:
Рисунок 1.1 - Функциональная схема САП температуры нагрева металлического сердечника электропечи
Автоматическое регулирование температурного режима осуществляется системами управления с обратной связью, вырабатывающими управляющие воздействия в зависимости от величины знака отклонения регулируемой величины от заданного значения.
В качестве объекта исследования рассмотрим промышленную электрическую печь СУОП-015.20/12М-43 в системе автоматической стабилизации температуры, выполненной на базе высокочастотного регулятора температуры ВРТ-3.
Система автоматической стабилизации температуры электропечи выполнена на промышленных приборах государственной системы промышленных приборов и средств автоматизации (ГСП) аналоговой электрической ветви. Ее структурная схема представлена на рисунке 1.2.
Рисунок 1.2 – Структурная схема исследуемой САУСигнал с датчика температуры Дт (термопара) поступает на вход. В блоке И-102 сигнал термопары компенсируется сигналом от встроенного задатчика и разница этих сигналов усиливается предварительным усилителем блока И-102.
Усиленный сигнал ошибки e поступает на вход регулирующего аналогового прибора Р-111, в котором могут быть сформированы П, ПИ, ПИД законы регулирования. Реализация типовых законов регулирования осуществляется на базе операционного усилителя с использованием RC-звеньев коррекции в цепи обратной связи. Р-111 имеет индикаторы, по которым можно контролировать величину разбаланса и выходной ток, органы динамической настройки, а также переключатель управления, позволяющий перейти на ручное управление объектом и обеспечивающий "безударное" переключение.