Смекни!
smekni.com

Разработка микропроцессорной системы на базе микроконтроллера для пожарной сигнализации (стр. 2 из 4)

Выходной текущий зажим, IOK (VO < 0 или VO > VDD) ?????????????????????????????????????????????????????????????????????????????????????????????????????????????? ??20 mA

Максимальный вывод, текущий ниже уровня чем угодно I/O pin. 25 mA

Максимальный вывод текущий sourced любой вход I/O 25 mA

Максимально текущий ниже уровня?PORTA 80 mA

Максимальный текущий sourced PORTA 50 mA

Максимально текущий ниже уровня PORTB 150 mA

Максимальный текущий sourcedPORTB100 mA

Примечание 1:Значения напряжения ниже VSS на входе MCLR, индуктируя больше токи, чем 80 mA, может вызвать верхним пределом.

Поэтому, резистор серии 50-100W должен использоваться при обращении “низкого уровня” ко входу MCLR скорее, чем вдергивание этого входа непосредственно к VSS

3. Разработка алгоритмов устройства

Алгоритм работы программы модулятора показан на рис. 4. После пуска и инициализации регистров программа переходит к постоянному контролю датчиков на размыкание. Контроль датчиков производится в то время, когда несущая включена. Это происходит через одну секунду. Если любой из 11 датчиков сработал, то номер этого датчика переписывается в регистр модуляции. Далее значение регистра модуляции сравнивается на ноль, и если оно не равно нулю, то регистр декрементируется. Устанавливается логическая единица на выходе RA3, включая тем самым модуляцию передатчика. Отработав паузу, равную 2,7 мс, выход устанавливается в нулевое состояние. Программа переходит на сравнение регистра модуляции на ноль. Таким образом, в то время, когда включена несущая, произойдет модуляция количеством импульсов, равным номеру сработавшего датчика.

Когда регистр модуляции обнулится, программа выключит несущую и установит флаг выключения несущей по срабатыванию датчика. Далее программа ожидает выключения флага несущей по переполнению таймера. Прерывание по переполнению таймера происходит либо из подпрограммы ожидания выключения флага несущей, либо, если датчик не сработал, из подпрограммы опроса датчиков.

При кварцевом резонаторе на частоту 32768 Гц, коэффициенте деления предделителя, равном 32, и коэффициенте деления таймера, равном 256, прерывание по переполнению таймера будет происходить каждую секунду. После сохранения регистров проверяется флаг включения несущей.Если несущая была включена, то проверяется флаг выключения несущей по срабатыванию датчиков. Если несущая выключена, то прерывание завершается восстановлением регистров. Если несущая не выключена по срабатыванию датчиков, формируется импульс модуляции, выключается несущая и устанавливается флаг выключения несущей по переполнению таймера. Прерывание завершается.

Рис. 4 - Алгоритм работы программы модулятора для пожарной сигнализации

Через секунду все повторится с включения несущей и формирования импульса модуляции, если не произошло выключение несущей по срабатыванию датчиков. Если датчики сработали, то импульс модуляции не формируется. Таким образом, если ни один датчик не разомкнут, каждую секунду будет формироваться импульс модуляции длительностью 2,7 мс. Импульс модуляции будет сформирован в центре импульса включения несущей. Длительность импульса включения несущей равна 8 миллисекундам. Если же какой-либо датчик сработал, то несущая включится на время формирования количества импульсов модуляции, равном номеру датчика. Если охранные датчики не сработали, то идет постоянный опрос датчиков и сброс флага выключения несущей по срабатыванию датчиков.

Алгоритм работы программы демодулятора показан на рис. 5. В демодуляторе используется два прерывания: по переполнению таймера и по изменению сигнала на входе порта «ВО». После пуска и инициализации программа выполняет постоянную индикацию. В дежурном режиме регистр индикации нулевой и все сегменты индикации будут иметь нулевое значение. Для семисегментного индикатора с общим катодом это равносильно выключению индикатора.

В дежурном режиме пожарной сигнализации с компаратора приемника будут поступать импульсы на вход RB0 с интервалом в одну секунду. С такой же частотой будет происходить прерывание по входу RB0. После сохранения значений регистров определяется, почему произошло прерывание-. Если прерывание произошло не по переполнению таймера, то проверяется длительность входного импульса. Если длительность импульса короче, чем половина длительности импульса посылки с передатчика (т.е. 1,34 мс), то такой импульс воспринимается как помеха и не подсчитывается счетчиком. Если длительность импульса больше 1,34 мс, то обнуляется таймер, определитель и счетчик миллисекунд. Если флаг переполнения включен (было переполнение), то инкрементируется регистр счета. Далее процессор проверяет значение регистра счета. Если в регистр записано 20 и более импульсов, то регистр обнуляется и включается звуковой сигнал. Ситуация, когда на счетчик приходит 20 импульсов, принята аварийной. Это возможно при работе пожарной сигнализации в зоне повышенных помех или помех, которые наводятся специально.


Рис. 5 - Алгоритм работы программы, демодулятора для пожарной сигнализации

Каждые 0,125 секунды может происходить прерывание от переполнения таймера. За одну секунду между импульсами, поступающими на вход RB0, произойдет 8 прерываний по переполнению таймера. При каждом прерывании будет инкрементироваться счетчик миллисекунд. Но поскольку коэффициент деления счетчика миллисекунд равен 11, то переполнения счетчика за одну секунду не будет. А каждая новая секунда будет начинаться с обнуления таймера и счетчика миллисекунд. При значении счетчика, равном 5 (0,6 с), переписывается значение регистра счета в регистр индикации. Это необходимо для того, чтобы при выходе передатчика из аварийного режима обнулялось предыдущее значение регистра счета. Далее проверяется значение регистра индикации, чтобы оно не превышало число 12. Если значение регистра индикации равно или больше 12, то регистр обнуляется. Последующая проверка регистра счета на число 20 является дублирующей аналогичную проверку при инкрементировании регистра счета.

При значении счетчика миллисекунд, равном 7 (0,88 с), выключается звуковой сигнал, если он был включен, и сбрасывается флаг переполнения (рис. 8.). Это также необходимо для нормального выхода из аварийного режима, поскольку эти операции (при значении счетчика 5 и 7) выполняются в интервале времени, равном 1 секунде.

Если после последнего импульса, пришедшего на вход, прошло более 1 секунды, точнее, 1,125, а это соответствует значению счетчика миллисекунд, равному 9, включится звуковой сигнал и установится флаг переполнения. Включение флага переполнения разрешает подсчет входных импульсов. А при каждом входном импульсе сбрасывается счетчик миллисекунд, таймер и предделитель. Поэтому значение счетчика миллисекунд, равное 11, возможно только тогда, когда приемник выходит из зоны действия передатчика или если передатчик прекратил функционирование. В этой ситуации счетчик миллисекунд обнуляется, а звуковой сигнал уже включен.

Таким образом, при поступлении импульсов на вход RB0 каждую секунду, что свидетельствует о нормальной работе охраны, сигнал тревоги включаться не будет, а цифровой индикатор не будет светиться. При размыкании любого из датчиков произойдет переполнение счетчика миллисекунд, включится сигнал, а на индикаторе можно наблюдать номер сработавшего датчика.


Рис. 6 - Алгоритм работы программы демодулятора для пожарной сигнализации

Для наглядности алгоритма работы программы демодулятора рассмотрим диаграмму, показанную на рис. 7 (для наглядности на диаграмме масштаб не соблюдается). В дежурном режиме каждое включение несущей передатчика сопровождается выдачей импульса модуляции. Импульс модуляции с выхода компаратора приемника будет поступать на демодулятор через одну секунду. В аварийном режиме несущая передатчика будет включаться только на время «t» для формирования импульсов с числом, равным номеру датчика. Учитывая, что период импульсов равен 5,37 мс, максимальное значение «t» будет приблизительно равно 0,06 мс (И импульсов). А максимальное значение длительности паузы между импульсами будет равно 2 - 0,06 = 1,94 с. Счетчик миллисекунд демодулятора до включения аварийного режима имеет коэффициент деления, равный 9, поэтому переполнение счетчика будет происходить через 1,125 секунды, что гораздо меньше максимального значения паузы.

При первом переполнении счетчика миллисекунд включается флаг переполнения. После включения флага переполнения начинает заполняться регистр счета. Перезапись в регистр индикации производится спустя 0,6 с после прихода последнего импульса. Таким образом, индикация обновляется каждые две секунды.

Если число импульсов, поступивших с компаратора, больше 11, то результат не выводится на индикатор как заведомо ложный. Такой вариант возможен при высоком уровне помех. Но даже и в этом случае включение звукового сигнала будет свидетельствовать о несанкционированном вторжении на охраняемый объект. При поступлении более 20 импульсов при любом значении флага переполнения включится тревожный сигнал. Это сделано для того, чтобы невозможно было вывести систему из строя путем подачи непрерывного сигнала помехи.

Рис. 7 - Диаграммы работы демодулятора

При экспериментировании с подачей сигнала сильной помехи по общему проводу наблюдался самопроизвольный переход микроконтроллеров в режим повышенного энергопотребления. Это я могу объяснить самопроизвольной переустановкой регистра, который определяет установку входа как выход (TRISA, TRISB).

4. Ассемблирование

Для ассемблирования спользуется макpоассемблеp MPASM, он содеpжит все необходимые нам возможности. MPASM входит в пакет программ Microchip MPLAB фирмы Microchip Technology.