Смекни!
smekni.com

Разработка модели триггерного устройства на базе микросхем типа К564 с последующим использованием выходов (стр. 4 из 4)

При подаче на вход счетчика М считываемых сигналов, на выходе его возникает сигнал переполнения, а счетчик возвращается в начальное состояние, т.е. счет единичных сигналов осуществляется в нем по модулю М (или с периодом счета Тn = М.)

В ЭВМ счетчики используются для образования последовательности адресов команд, для счета количества циклов выполнения операций, в преобразователях информации из непрерывной формы в дискретную и т.п.

В зависимости от способа кодирования различают счетчики с позиционным (единичным, двоичным, троичным и т.д.), комбинированным позиционным и непозиционным (код Грея) кодированием. В счетчиках с позиционным кодированием числовое выражение текущего состояния определяется формулой:

yi =

wкQк

где n - количество разрядов;

wк - вес к-го разряда;

Qк- логическое значение разряда, определяемое состоянием соответствующего триггера.

На практике в основном используются счетчики с позиционным кодированием.

По целевому назначению счетчики бывают простые (суммирующие и вычитающие) и реверсивные. На простые счетчики сигналы поступают с одним знаком, т.е. эти счетчики имеют переходы от состояния к состоянию только в одном направлении. Суммирующий счетчик предназначен для выполнения счета в прямом направлении, т.е. для сложения. С подачей очередного единичного сигнала на вход показание счетчика увеличивается на единицу. Вычитающий счетчик предназначен для выполнениясчета единичных сигналов в режиме вычитания. Каждый счетный сигнал, поступивший на вход такого счетчика, уменьшает его показания на единицу. Реверсивные счетчики предназначены для работы в режиме сложения и вычитания.

В зависимости от способа организации счета счетчики подразделяются на асинхронные и синхронные. В асинхронных счетчиках сигнал от каскада к каскаду передается естественным путем в различные интервалы времени в зависимости от сочетания входных сигналов. В синхронных счетчиках сигналы от каскада к каскаду передаются принудительным путем при помощи тактовых сигналов,

По способу организации цепей переноса между каскадами различают счетчики с последовательным, сквозным (параллельным), групповым и частично групповым переносом.

Основными характеристиками счетчика являются:

- модуль счета - период счета или коэффициент пересчета;

- разрешающая способность;

- время регистрации;

- емкость счетчика.

Модуль счета (М) характеризует число устойчивых состояний счетчика, т.е. предельное число входных сигналов которое может сосчитать конкретный счетчик.

Разрешающая способность - это минимально допустимый период следования входных сигналов, при котором еще обеспечивается надежная работа счетчика. Чем больше частота поступления счетных сигналов, тем больше быстродействие счетчика.

Время регистрации (Тр) - интервал времени между моментами поступления входного сигнала и окончания самого длинного переходного процесса в схеме счетчика.

Емкость счетчика (N) определяется максимальным числом единичных сигналов, которое может быть зафиксировано на счетчике. Эта характеристика зависит от основания системы счисления и числа каскадов. (N=2n).

Счетчик К564ИЕ9

Микросхема К564ИЕ9— четырехразрядный счетчик-делитель на восемь Джонсона.

Назначение выводов ИС К564ИЕ9

Условно-графическое обозначение ИС К564ИЕ9:


Основой счетчика Джонсона является кольцевой сдвигающий регистр, у которого имеется одна перекрестная связь, обеспечивающая инверсную перезапись информации в один из разрядов регистра при прямой перезаписи информации во всех остальных разрядах. Важными свойствами счетчиков Джонсона являются их высокое быстродействие и простота дешифрации состояний. Быстродействие определяется временем установки одного разряда, а дешифрация состояний осуществляется с помощью двухвходовых ЛЭ И.

В качестве одного разряда счетчика используется тактируемый M-S-триггер типа Dс непосредственным входом установки L. Триггер состоит из двух триггеров: основного М и вспомогательного S. Запись информации в триггер осуществляется последовательно, сначала в основной (при отсутствии тактового импульса), затем во вспомогательный (по тактовому импульсу). Счетчик осуществляет счет от положительного фронта тактового сигнала С при напряжении низкого уровня на входе разрешения Е. При высоком уровне напряжения на входе Е происходит блокировка счета. Счетчик осуществляет счет также от отрицательного фронта сигнала Е при высоком уровне напряжения по входу С.


Функциональная схема ИС:

В процессе работы счетчика на выходе переноса CRформируется последовательность импульсов со скважностью Q=2 и частотой, равной /вк/8. Обнуление счетчика происходит при подаче уровня Н на вход установки нуля R, при этом выходы 0 и CRпринимают состояние высокого уровня, а все остальные выходы —состояние низкого уровня. При работе микросхемы сначала происходит последовательная запись уровня Н во все разряды, начиная с первого, затем первый разряд переходит в состояние Lипроисходит обратный процесс последовательное заполнение всех разрядов счетчика уровнем L. Дешифрация состояния счетчика производится с помощью восьми двухвходовых схем И — НЕ, при этом напряжение Н имеется всегда лишь на одном из выходов 0—7. В ИС К564ИЕ9 используется восьмеричный код Джонсона, который отличается от двоичного и двоично-десятичного кода тем, что, когда счетчик переходит к следующему логическому состоянию, меняется только одна логическая переменная.


Таблица истинности ИС К564ИЕ9:

Для счетчика создаётся, как и для всех элементов, УГО, посадочное место и библиотечный элемент. Посадочное место будет несколько иным из-за количества ножек = 16.

Рис. 14 Штыревое посадочное место для счетчика ИС К564ИЕ9


При моделировании данного счетчика в качестве входных сигналов С, Е, R используются значения C, Q2, HR2.

Временные диаграммы работы счетчика будут иметь вид:

Рис 15. Временные диаграммы работы счетчика.

Разработка принципиальной электрической схемы

Графический редактор P-CADSchematicпредназначен для разработки электрических принципиальных схем с использованием условных графических обозначений элементов. При этом УГО ЭРЭ могут извлекаться из соответствующей библиотеки или создаваться средствами самой программы.

Если не разрабатывается узел печатной платы, то при вычерчивании схем берутся УГО элементов, не связанные с их конструктивной базой. Такая схема может использоваться как иллюстративный материал. При возникновении необходимости разработки ПП ее надо дополнить соответствующей конструкторско-технологической информацией.

При выполнении проекта с разработкой узла ПП схема должна формироваться из библиотечных элементов, которые включают полную информацию о конструктивных особенностях ЭРЭ и их посадочных местах на ПП.

Рис 16. Принципиальная электрическая схема.

Комплекс временных диаграмм работы триггерного устройства и счетчика К564ИЕ9:

Рис 15.Временные диаграммы работы триггерного устройства и счетчика К564ИЕ9.

Проектирование печатной платы

Графический редактор PCAD РСВ предназначен для выполнения работ, связанных с технологией разработки и конструирования узлов печатных плат. Он позволяет упаковывать схемы на плату, задавать размеры ПП, ширину проводников и величину индивидуальных зазоров для разных проводников, задавать размеры контактных площадок и диаметры переходных отверстий, экранные слои. Редактор позволяет выполнять маркировку ЭРЭ, их размещения, неавтоматическую трассировку проводников и формировать управляющие файлы для технологического оборудования. Система PCAD 2002 включает две программы автоматической трассировки печатных проводников, которые вызываются из редактора PCADPCB.Это трассировщики QuickRoute и ShapeBasedRouter.

Программа QuickRoute реализует сеточную технологию (GridBased) и пригодна для быстрой разработки не очень сложных ПП, включающих не более 4х слоев металлизации. По сравнению с другими эта программа менее эффективна и работает только в дюймовой системе.

Трассировщик ShapeBasedRouter основан на бессеточной технологии (ShapeBased) и реализует принципы оптимизации нейронных сетей. Программа предназначена для трассировки многослойных ПП (до 30 слоев) с высокой плотностью размещения ЭРЭ и реализует такие алгоритмы, которые стремятся получить 100% трассировки соединений. Работает программа в автоматическом, интерактивном и ручном режимах.

Пример трассировки при помощи трассировщика QuickRoute:

Рис 18. Пример трассировки при помощи трассировщика QuickRoute.

Литература

1. Преснухин Л.Н., Воробьёв Н.И., Шишкевич А.А. Расчёт элементов цифровых устройств. М., Высшая школа, 1991.

2. Угрюмов Е.П. Проектирование элементов и узлов ЭВМ. М., Высшая школа, 1987.

3. Иванов С.Р., Черников А. С. Синтез статических триггеров. МУ к КР по курсу “Схемотехника ЭВМ и систем". М., 1987.

4. Табарин Б.В., Якубовский С.В., Справочник по интегральным микросхемам. М., «Энергия», 1980

5. Пухальский Г. И., Новосельцева Т. Я. Проектирование ДУ на интегральных микросхемах. М., «Радио и связь», 1990