При обработке речевых сигналов особенно широкое применение находят системы, инвариантные к временному сдвигу. Такие системы полностью описываются откликом на единичный импульс, Сигнал на выходе системы может быть рассчитан по сигналу на входе и отклику на единичный импульс h(n) с помощью дискретной свертки
(1.5a)где символ * обозначает свертку. Эквивалентное выражение имеет вид
(1.5б)Линейные системы, инвариантные к временному сдвигу, применяются при фильтрации сигнала и, что более важно, они полезны как модели речеобразования.
Анализ сигналов и расчет систем значительно облегчаются при их описании в частотной области. В этой связи полезно кратко остановиться на представлении сигналов и систем в дискретном времени с использованием преобразования Фурье и z-преобразования [1].
1.1.1 Прямое и обратное г-преобразование
Прямое и обратное г-преобразование последовательности определяется двумя уравнениями:
Прямое z-преобразование х(n) определяется уравнением (1.6а). В общем случае Х(z) - бесконечный ряд по степеням z-1; последовательность х(n) играет роль коэффициентов ряда. В общем случае подобные степенные ряды сходятся к конечному пределу только для некоторых значений z. Достаточное условие сходимости имеет вид
(1.7)Множество значений, для которых ряды сходятся, образует область на комплексной плоскости, известную как область сходимости. В общем случае эта область имеет вид [2]
(1.8)1.1.2 Преобразование Фурье
Описание сигнала в дискретном времени с помощью преобразование Фурье задаётся в виде
(1.9a) (1.9б)Эти уравнения представляют собой частный случай уравнений (1.6а,б).
Преобразование Фурье получается путём вычисления z -преобразования на единичной окружности, т. е. подстановкой
. Частота может быть интерпретирована как угол на z - плоскости. Достаточное условие существования преобразования Фурье можно получить, подставляя в (1.7) (1.10)Важная особенность преобразования Фурье последовательности состоит в том, что оно является периодической функцией со с периодом 2к. С другой стороны, поскольку
представляет собой значение Х(z)на единичной окружности, оно должно повторяться после каждого полного обхода этой окружности, т. е. когда со изменится на рад [1].1.1.3 Дискретное преобразование Фурье
Как и в случае аналоговых сигналов, если последовательность периодическая с периодом N, т. е.
(1.11)то х(n) можно представить в виде суммы синусоид, а не в виде интеграла. Преобразование Фурье для периодической последовательности имеет вид
(1.12а) (1.12б)Это точное представление периодической последовательности. Однако, основное преимущество данного описания заключается в возможности несколько иной интерпретации уравнений (1.12). Рассмотрим последовательность конечной длины х(n), равную нулю вне интервала
B этом случае z-преобразование имеет вид (1.13)Если записать X(z) в N равноотстоящих точках единичной окружности, т. е.
, k= 0, 1,…,N-1, то получим (1.14)Если при этом построить периодическую последовательность в виде бесконечного числа повторений сегмента х(n),
(1.15)то отсчеты (
), как это видно из (1.12а) и (1.14), будут представлять собой коэффициенты Фурье периодической последовательности х(n) в (1.15). Таким образом, последовательность длиной N можно точно описать с помощью дискретного преобразования Фурье (ДПФ) в виде (1.16)Следует иметь в виду, что все последовательности при использовании ДПФ ведут себя так, как если бы они были периодическими функциями, т. е. ДПФ является на самом деле представлением периодической функции времени, заданной (1.15). Несколько иной подход при использовании ДПФ заключается в том, что индексы последовательности интерпретируются по модулю N. Это следует из того факта, что если х(n) имеет длину N, то
Введение двойных обозначений позволяет отразить периодичность, присущую представлению с помощью ДПФ. Эта периодичность существенно отражается на свойствах ДПФ. Очевидно, что задержка последовательности должна рассматриваться по модулю N. Это приводит, например, к некоторым особенностям выполнения дискретной свертки.
Дискретное преобразование Фурье со всеми его особенностями является важным способом описания сигналов по следующим причинам: 1) ДПФ можно рассматривать как дискретизированный вариант z -преобразования (или преобразования Фурье) последовательности конечной длительности; 2) ДПФ очень сходно по своим свойствам (с учетом периодичности) с преобразованием Фурье и z-преобразованием; 3) N значений Х(k) можно вычислить с использованием эффективного (время вычисления пропорционально NlogN) семейства алгоритмов, известных под названием быстрых преобразований Фурье (БПФ).
Дискретное преобразование Фурье широко используется при вычислении корреляционных функций, спектров и при реализации цифровых фильтров, а также часто используется и при обработке речевых сигналов [1-5].
1.1.4 Спектральный анализ
Спектральный анализ – это метод обработки сигналов, который позволяет выявить частотный состав сигнала. Поскольку анализируемые сигналы во многих случаях имеют случайный характер, то важную роль в спектральном анализе играют методы математической статистики. Частотный состав сигналов определяют путем вычисления оценок спектральной плотности мощности (СПМ). Задачами вычисления СПМ являются обнаружение гармонических составляющих в анализируемом сигнале и оценивание их параметров. Для решения указанных задач требуется соответственно высокая разрешающая способность по частоте и высокая статистическая точность оценивания параметров. Эти два требования противоречивы. Аргументы в пользу выбора высокого разрешения или высокой точности оценки СПМ зависят от того, что интересует исследователя: устойчивые оценки в пределах всего диапазона частот или высокая степень обнаруживаемости периодических составляющих.
Все методы цифрового спектрального анализа можно разделить, на две группы [6-7]: классические методы, базирующиеся на использовании преобразований Фурье, и методы параметрического моделирования, в которых выбирается некоторая линейная модель формирующего фильтра и оцениваются его параметры. К первой группе относят корреляционный и периодограммные методы. Ко второй группе относят методы оценивания СПМ на основе авторегрессии скользящего среднего и др.
Периодограммный метод обеспечивает вычисление оценки СПМ непосредственно по числовой последовательности х[nТ0], формируемой путем дискретизации стационарного эргодического случайного процесса x(t). Периодограммная оценка СПМ равна [6-7]
Выражение (1.18) соответствует возможности вычисления СПМ с помощью преобразования Фурье непосредственно по реализации исходного сигнала.
Вычисленная с помощью (1.18) оценка СПМ является несостоятельной, т.е. с увеличением N она не улучшается. Для получения состоятельной оценки ее необходимо сглаживать. Кроме этого, при выполнении преобразования Фурье последовательности х[nТ0] конечной длины /V происходит «размывание» спектра, которое также оказывает влияние на состоятельность оценки СПМ.
Ограничение последовательности х[nТ0] конечным числом значений равносильно умножению исходной бесконечной последовательности х0 [nТ0] на другую последовательность