где pi – теоретическая вероятность того, что случайная величина Х примет значение из интервала [ai-1,ai].
Предположим, что случайная величина t имеет функцию распределения F(t), поэтому pi = F(ai) – F(ai-1).
Образец расчетов по предыдущей формуле для трех распределений представлен в таблице 6.
В колонке А содержатся левые, а в колонке В – праве границы интервалов. В колонке С находятся соответствующие частоты. В колонке D рассчитываются теоретические вероятности в зависимости от вида распределения.
Для экспоненциального распределения:
D31 = ЭКСПРАСП (B31; $B$5; ИСТИНА) – ЭКСПРАСП (А31; $B$5; ИСТИНА);
Для нормального распределения:
D40 = НОРМРАСП (В40; $B$8; $B$9; ИСТИНА) – НОРМРАСП (А40; $B$8; $B$9; ИСТИНА);
Для гамма-распределения:
D49 = ГАММАРАСП (В49; $B$12; $B$13; ИСТИНА) – ГАММАРАСП (А49; $B$12; $B$13$ ИСТИНА).
В колонке Е рассчитываются слагаемые соотношения по формуле:
Е31 = (С31-100*В31)^2/(100*D31), которая копируется в другие ячейки колонки Е.
После чего для каждого рассмотренного распределения определим итоговые суммы:
Е38 = СУММ(E34:E39);
Е47 = СУММ(E42:E47);
Е56 = СУММ(Е50:Е55).
Которые равны соответственно 659,6862; 5,2199 и 3,8740.
Гипотеза о виде закона распределения должна быть принята, если вычисленное значение χ2выч достаточно мало, а именно не превосходит критического значения χ2кр, которое определяется по распределению χ2 в зависимости от заданного уровня значимости α и числа степеней свободы r=k’ – s – 1. где k’ – количество интервалов после объединения; s – число неизвестных параметров распределения, которые были определены по выборке.
В данном примере r = 7 – 2 – 1 = 2
Критическое значение рассчитывается по формуле:
Е57 = ХИ2ОБР(0,05;4), из таблицы 6 видно, оно равно 9,4877.
Поскольку 5,2199<9,4877, то принимается гипотеза о том, что статистические данные имеют нормальное распределение с параметрами α = = 98,68и σ = 8,7673 соответственно.
Таблица 6 – Подбор распределения на основе критерия χ2
А | B | С | D | E | |
29 | Левая граница | Правая граница | Частота | Вероятности | χ² |
30 | Экспоненциальное распределение | ||||
31 | 70 | 85 | 5 | 0,069374468 | 0,5411 |
32 | 85 | 90 | 16 | 0,020878363 | 92,7028 |
33 | 90 | 95 | 18 | 0,019846835 | 129,2349 |
34 | 95 | 100 | 24 | 0,018866271 | 259,1934 |
35 | 100 | 105 | 16 | 0,017934153 | 112,5378 |
36 | 105 | 110 | 11 | 0,017048088 | 50,6805 |
37 | 110 | 120 | 10 | 0,031610928 | 14,7957 |
38 | Сумма | 659,6862 | |||
39 | Нормальное распределение | ||||
40 | 70 | 85 | 5 | 0,058804812 | 0,1318 |
41 | 85 | 90 | 16 | 0,101737571 | 3,3365 |
42 | 90 | 95 | 18 | 0,176260064 | 0,0079 |
43 | 95 | 100 | 24 | 0,222500256 | 0,1376 |
44 | 100 | 105 | 16 | 0,204663183 | 0,9747 |
45 | 105 | 110 | 11 | 0,137173828 | 0,5383 |
46 | 110 | 120 | 10 | 0,090811892 | 0,0930 |
47 | Сумма | 5,2199 | |||
48 | Гамма-распределение | ||||
49 | 70 | 85 | 5 | 0,053672643 | 0,0251 |
50 | 85 | 90 | 16 | 0,107072418 | 2,6163 |
51 | 90 | 95 | 18 | 0,185399233 | 0,0157 |
52 | 95 | 100 | 24 | 0,224931406 | 0,1009 |
53 | 100 | 105 | 16 | 0,197757868 | 0,7209 |
54 | 105 | 110 | 11 | 0,129724735 | 0,2999 |
55 | 110 | 120 | 10 | 0,090713209 | 0,0951 |
56 | Сумма | 3,8740 | |||
57 | Критическое значение критерия | 9,4877 |
1.6.5 Определение характеристик надежности системы
После подтверждения гипотезы о виде закона распределения, определим характеристики надежности системы. Ббыло установлено, что случайная величина имеет плотность распределения вероятностей:
Основными характеристиками надежности невосстанавливаемой системы являются вероятность безотказной работы, и вероятность отказа в течение времени t.
Данные характеристики вычисляются по формулам:
В64 = 1 - НОРМРАСП (А64; $B$8; $B$9; ИСТИНА);
С64 = 1 - В64;
Плотность распределения и интенсивность отказа рассчитаем по следующим формулам:
D64 = НОРМРАСП (А64; $B$8; $B$9; ЛОЖЬ);
E64 = D64/B64.
Далее скопируем формулы в ячейки В64:В74, С64:С74, D64:D74, E64:E74 соответственно.
В результате будет получена таблица вычисленных ранее значений (таблица 7) и построены их графики (рисунки 6,7,8).
Таблица 7 – Значения показателей надежности объекта испытаний
А | B | C | D | E | |
63 | t | P(t) | Q (t) | f (t) | λ (t) |
64 | 63,611 | 1,000 | 0,000 | 0,000 | 0,000 |
65 | 74,000 | 0,998 | 0,002 | 0,001 | 0,001 |
66 | 84,000 | 0,953 | 0,047 | 0,011 | 0,012 |
67 | 94,000 | 0,703 | 0,297 | 0,039 | 0,056 |
68 | 104,000 | 0,272 | 0,728 | 0,038 | 0,139 |
69 | 114,000 | 0,040 | 0,960 | 0,010 | 0,245 |
70 | 124,000 | 0,002 | 0,998 | 0,001 | 0,363 |
71 | 134,000 | 0,000 | 1,000 | 0,000 | 0,485 |
Рисунок 6 – График вероятности безотказной работы и вероятности отказа
Рисунок 7 – График плотности распределения вероятности
Рисунок 8 – График интенсивности отказа
1.6.6 Протокол испытаний
ИСПЫТАТЕЛЬНЫЙ ЦЕНТР «ПЭМЗ-электро»
аттестат № РОСС RU.0004.13ЛРН02
445030. Тольятти, ул. Свердлова 19 | телефон (8482) 33-77-88 | e-mail: pemz-elektro@tlt.ru |
ПРОТОКОЛ ИСПЫТАНИЙ № 13
ЗАКАЗЧИК:
ОАО «Старт», 445028, г. Тольятти, ул. Революционная 72а.
ПРОИЗВОДИТЕЛЬ ПРОДУКЦИИ:
ООО «Электротех», г. Самара, ул. Новосадовая 3.
ВИД ИСПЫТАНИЯ:
Определение фактических показателей надежности электродвигателя однофазного коллекторного переменного тока типа ДК 60 – 40.
ПРОДОЛЖИТЕЛЬНОСТЬ ИСПЫТАНИЙ:
10.09.2008 г. – 25. 12. 2008 г.
ДОГОВОР №:
По заявке от 01.09.2008 г.
ТЕКСТ: 2 стр.
ЦЕЛЬ ИСПЫТАНИЯ:
Определение реального уровня надежности у предъявляемых объектов по опытным данным определительных испытаний.
ОТБОР ОБРАЗЦОВ:
Дата отбора: 15.09.2008 г.
Место отбора: склад
Другие сведения: отбор образцов и их подготовка к испытаниям по ГОСТ Р 11828-86.
ХАРАКТЕРИСТИКА ОБРАЗЦОВ:
Вид продукции: электродвигатель однофазный коллекторный переменного тока типа ДК 60 – 40.
Другие сведения: средняя наработка до отказа не менее 90 ч.
МЕТОДИКА ИСПЫТАНИЙ:
Испытания проводились по плану [NUN], согласно которому испытывались одновременно 100 объектов, отказавшие во время испытаний объекты не подлежали восстановлению и не заменялись, испытания прекращались, когда число отказавших объектов достигло также 100.
РЕЗУЛЬТАТЫ ИСПЫТАНИЙ:
Значения показателей надежности объекта испытаний приведены в таблице.
t | P(t) | Q (t) | f (t) | λ (t) |
63,611 | 1,000 | 0,000 | 0,000 | 0,000 |
74,000 | 0,998 | 0,002 | 0,001 | 0,001 |
84,000 | 0,953 | 0,047 | 0,011 | 0,012 |
94,000 | 0,703 | 0,297 | 0,039 | 0,056 |
104,000 | 0,272 | 0,728 | 0,038 | 0,139 |
114,000 | 0,040 | 0,960 | 0,010 | 0,245 |
124,000 | 0,002 | 0,998 | 0,001 | 0,363 |
134,000 | 0,000 | 1,000 | 0,000 | 0,485 |
Заключение:Результаты испытаний: электродвигатели соответствуют требованиям по средней продолжительности горения.
Руководитель ИЦ «ПЭМЗ-электро» Д.В. Айдаров
Руководитель группы испытаний ИЦ «ПЭМЗ-электро» А. А. Телепова
2. Пример обработки результатов испытаний для невосстанавливаемого объекта испытаний
Постановка задачи
На испытаниях находится N = 56 объектов с восстановлением. В течение периода Т = 600 часов регистрируются моменты времени отказов элементов (таблица 8). Предполагается, что отказавшие элементы заменяют идентичными по надежности элементами. Требуется определить показатели надежности элемента, характеризующие время его работы между соседними отказами: Т, P(t), Q(t), f(t), λ(t).
Испытания проводятся по плану [NRT], согласно которому одновременно начинают испытания N=56 объектов, отказавшие во время испытаний объекты заменяют новыми, испытания прекращают при истечении времени испытаний или наработки T.
Обработка статистических данных предусматривает их группировку в 10 частичных интервалах (классах). Уровень значимости принять равным 0,05.
Таблица 8 – Время между отказами элементов
Номер элемента | Моменты отказа на периоде времени 600 часов |
1 | 104; 93; 107; 118; 89; 86 |
2 | 86; 98; 116; 82; 110; 103 |
3 | 106; 112; 94; 83; 98; 91 |
4 | 94; 106; 102; 107; 89; 91 |
5 | 117; 96; 103; 117; 83 |
6 | 94; 92; 107; 108; 106 |
7 | 90; 96; 84; 107; 99; 99 |
8 | 104; 106; 99; 103; 94; 82 |
9 | 99;95; 106; 119; 111 |
10 | 109; 118; 104; 95; 98 |
2.2 Вычисление основных характеристик выборки