Смекни!
smekni.com

Разработка программы определительных испытаний (стр. 4 из 5)

Основными числовыми характеристиками выборочной совокупности являются: выборочное среднее, выборочная дисперсия, выборочное среднее квадратическое (или стандартное) отклонение, наименьшее и наибольшее значения, размах выборки, асимметрия, эксцесс.

Значения вычисляемых характеристик расположим в ячейках с F12 по F19, как показано в таблице 9.

Таблица 9 – Расчет выборочных характеристик

A B C D E F
1 104 93 107 118 89 86
2 86 98 116 82 110 103
3 106 112 94 83 98 91
4 94 106 102 107 89 91
5 117 96 103 117 83
6 94 92 107 108 106
7 90 96 84 107 99 99
8 104 106 99 103 94 82
9 99 95 106 119 111
10 109 118 104 95 98
11
12 Выборочное среднее 100,0892857
13 Выборочная дисперсия 100,7373377
14 Выборочное ср. квадр. отклонение 10,03679917
15 Наименьшее значение 82
16 Наибольшее значение 119
17 Размах выборки 37
18 Асимметрия 0,012585618
19 Эксцесс -0,711512555

Вычислим числовые характеристики выборочной совокупности по формулам:

Выборочное среднее: F12 = CРЗНАЧ(A1:F10);

Выборочная дисперсия: F13 = ДИСП(A1:F10);

Выборочное среднее квадратическое отклонение:

F14 = СТАНДОТКЛОН(A1:F10);

Наименьшее значение: F15 = МИН(A1:F10);

Наибольшее значение: F16 = МАКС(A1:F10);

Размах выборки: F17 = F16-F15;

Асимметрия: F18 = СКОС(A1:F10);

Эксцесс: F19 = ЭКСЦЕСС(A1:F10).

2.3 Формирование статистического ряда и графическое представление данных

Для наглядного представления статистических данных воспользуемся группировкой. Группировка данных производится в той же последовательности, что и в пункте 1.6.2 данной работы.

Для выборочной совокупности (таблица 8) результаты группировки представим в таблице 10. Сначала укажем объем выборки, максимальное и минимальное значение, размах выборки, количество групп и шаг:

А22 = 56, В22 =120, С22 = 80, D22 = B22 – C22, E22 =10, F22 = D22/E22

В этой таблице колонки В и С заполним левыми и правыми границами соответственно. Колонку D заполним по формуле:

D25 = (B25+C25)/2, с последующим копированием в ячейки D26:D34.

Таблица 10 – Группировка статистических данных

A B C D E F G H
21 n Xmax Xmin R k h
22 56 120 80 40 10 4
23
24 Группа Левая граница Правая граница Середина Частота Относ. частота Накоп. частота Накоп. относ. частота
25 1 80 84 82 5 0,0892 5 0,0892
26 2 84 88 86 2 0,0357 7 0,125
27 3 88 92 90 6 0,1071 13 0,2321
28 4 92 96 94 9 0,1607 22 0,3928
29 5 96 100 98 7 0,125 29 0,5178
30 6 100 104 102 7 0,125 36 0,6428
31 7 104 108 106 10 0,1785 46 0,8214
32 8 108 112 110 4 0,0714 50 0,8928
33 9 112 116 114 1 0,0178 51 0,9107
34 10 116 120 118 5 0,0892 56 1

Для заполнения колонки Е выделим ячейки Е25:Е34 и воспользуемся функцией ЧАСТОТА, указав массив статистических данных и массив правых границ интервалов: { = ЧАСТОТА (А1:F10; C25:C34)}

Одновременным нажатием клавиш заполним остальные выделенные ячейки.

Колонку F заполним с помощью формулы:

F25 = E25/$A$22, с последующим копированием в ячейки F26:F34

Колонку G заполним с помощью формулы:

G25 = E25, G26 = G25 + E26 с последующим копированием в ячейки G27:G34

Колонку H заполним с помощью формулы:

H25 = G25/$A$22, с последующим копированием в ячейки H26:H34

Данные, собранные в таблице 10 наглядно представим с помощью:

полигон частот – графическая зависимость частот (относительных частот) от середины интервалов (рисунок 9).

Рисунок 9 – Полигон частот

кумуляты частот – графическая зависимость накопленных частот (накопленных относительных частот) от середины интервалов (рисунок 10).


Рисунок 10 – Кумуляты частот

2.4 Подбор подходящего закона распределения вероятностей

Далее рассмотрим некоторые известные распределения, такие как равномерное, нормальное и гамма-распределение, с целью проверки подчиняется ли наше распределение вероятностей заданному.

Проверка на соответствие данных испытаний распределению производится перебором трех распределений, указанных выше, включая заданное, а именно равномерное.

Чтобы иметь полную информацию о распределении случайной величины, надо знать параметры этого распределения. Таким образом, математическое ожидание случайной величины t равно выборочной средней, а среднее квадратическое отклонение случайной величины t – выборочному среднему квадратическому отклонению. Указанные характеристики находятся в ячейках F12 и F14 соответственно. Поместим эти значения в ячейки А2 и В2 соответственно (таблица 11).

Определим параметры равномерного (a и b), нормального (m – математическое отклонение и σ – среднее квадратическое отклонение), экспоненциального и гамма-распределения (α и β) в соответствии с формулами:

,
,
,
,

B5 = 1/A2;

B8 = A2-В2*КОРЕНЬ(3);

B9 = А2+В2*КОРЕНЬ(3);

B12 = (A2/B2)^2;

B13 = B2^2/A2;

B16 = (A2/B2)^2;

B17 = B2^2/A2.

Таблица 11 – Значения плотностей распределения

A B C D E F
1 Матем. ожидание Ср. кв. отклон.
2 100,0892 10,0367
3
4 Параметры экспоненциального распределения
5 λ 0,0100
6
7 Параметры равномерного распределения
8 а 82,7050
9 b 117,4735
10
11 Параметры нормального распределения
12 m 100,0893
13 σ 10,0367
14
15 Параметры гамма-распределения
16 α 99,4454
17 β 1,0065
18
19 Середина Плотность относит. частот Плотность экспоненц. распред. Плотность нормал. распред. Плотность гамма- распред. Плотность равномер. распред.
20 82 0,0223 0,0044 0,0078 0,0076 0
21 86 0,0089 0,0042 0,0148 0,0156 0,0287
22 90 0,0267 0,0041 0,0240 0,0257 0,0287
23 94 0,0401 0,0039 0,0331 0,0349 0,0287
24 98 0,0312 0,0038 0,0389 0,0397 0,0287
25 102 0,0312 0,0036 0,0390 0,0383 0,0287
26 106 0,0446 0,0035 0,0334 0,0317 0,0287
27 110 0,0178 0,0033 0,0244 0,0229 0,0287
28 114 0,0044 0,0032 0,0152 0,0145 0,0287
29 118 0,0223 0,0031 0,0081 0,0081 0

В ячейках В20:В29 вычислим плотности относительных частот как частное от деления относительных частот (ячейки F25:F34) на шаг (ячейка $F$22) из таблицы 10.

Плотности равномерного, нормального, экспоненциального и гамма-распределений рассчитываются в соответствии с формулами:

С20 = ЭКСПРАСП (А20;$B$5;ЛОЖЬ);

D20 = НОРМРАСП (А20; $B$12; $B$13; ЛОЖЬ);

E20 = ГАММАРАСП (А20; $B$16; $B$17; ЛОЖЬ).

F20 = ЕСЛИ(А20<$B$8; 0; ЕСЛИ(A20>=$B$9; 1/($B$9-$B$8); 0));

Затем копируем их в блок ячеек С21:F21.

После чего строим гистограмму частот, совмещенную с плотностью каждого из указанных ранее распределений. Графическое изображение гистограммы кривых различных распределений приведены на рисунках 11- 13.

Рисунок 11 – Сглаживание гистограммы плотностью равномерного распределения


Рисунок 12 – Сглаживание гистограммы плотностью нормального распределения

Рисунок 13 – Сглаживание гистограммы плотностью гамма-распределения

Рисунок 14 – Сглаживание гистограммы плотностью экспоненциального распределения

Используя критерий χ2, установим, верна ли принятая гипотеза о том, что статистические данные подчиняются равномерному распределению, так, чтобы ошибка не превышала заданного уровня значимости α (вероятность того, что будет отвергнута правильная гипотеза).