Смекни!
smekni.com

Разработка радиоприемника (стр. 3 из 7)

Будем считать, что фильтрующий конденсатор CH имеет достаточно большую емкость, чтобы выполнялось:

Практически это достижимо, если несущая и модулирующая частоты различаются на порядки. Такой режим катодного детектора наиболее выгоден в отношении чувствительности.

В данном случае повторитель нагружен (для несущей частоты) на сопротивление, значительно меньшее его выходного сопротивления, равного 1/S. Следовательно, гипотетическую величину i', соответствующую линейному режиму работы, записать просто:

i' = SuBX

как в любом каскаде, где катодный резистор заблокирован конденсатором большой емкости.

Получаем знакомое уже условие эффективного детектирования, противоположное условию работы без отсечки:

SuBX >> I, т.е. uBX >> I/S

Рассмотрим каскад с триодом 6Н1П, пусть анодный ток равен 1 мА, при этом крутизна 2 мА/В. Тогда порог детектирования получается 0,5 В. Чувствительность будет повышаться с уменьшением тока покоя: при снижении тока в 8 раз она повышается вчетверо (почему – надеюсь, пояснять не надо). В практических схемах номинал катодного резистора выбирают поэтому от 50 до 200 кОм.

Катодный детектор легко рассчитать с позиции отсутствия искажений, вызванных как активной, так и реактивной внешней нагрузкой, при безусловном сохранении начальной добротности контура. Однако никаких других особенных достоинств у него нет (зато имеются недостатки), поэтому заметного распространения он не нашел.

2.5 Анодный детектор

Рассмотренные выше схемы детектирования имеют общую особенность: напряжение на открытом нелинейном элементе представляет собой только разность между огибающей АМ колебания и величиной выходного напряжения (тот же «сигнал ошибки», аналогично усилительным схемам с обратной связью). Потому детекторы обеспечивают малые искажения, причем форма характеристики нелинейного элемента совершенно не важна! Условие «линейности» детектирования сформулировано выше. Если оно не соблюдается (сигнал слабый), детектор превращается в нелинейный («квадратичный»).

В литературе можно встретить утверждение: любой детектор является линейным для «сильных» сигналов. Причина, якобы, в том, что для таких сигналов характеристика детектирующего элемента аппроксимируется кусочно-линейной, состоящей из двух прямых.

Это неверно. Ни при каких условиях полиномиальная характеристика не эквивалентна составленной из двух прямых. Применявшийся изредка в старой аппаратуре анодный детектор, в частности, осуществляет нелинейное преобразование сигнала в соответствии с формой характеристики лампы, при этом отсутствует отрицательная обратная связь. Ни при каких самых «сильных» сигналах здесь не обеспечивается линейная демодуляция. Не буду даже приводить эту мерзкую схему; впрочем, она отличается от сеточного детектора лишь подачей на лампу смещения, почти запирающего ее (для выполнения навязшего в зубах условия детектирования).

3. Современная элементная база детекторов

Одна из важнейших задач современной науки и техники – регистрация и формирование видеоизображения объектов с помощью различного вида излучений – от видимого света до частиц высоких энергий. Детекторы излучения применяются во многих сферах человеческой деятельности: физике элементарных частиц и астрофизике, ядерной физике и технике, таможенном контроле, медицине и биологии, лазерной физике и технике, технике оптической связи. Весьма актуальны датчики, используемые в медицине для получения высококачественных рентгеновских изображений. В современных рентгеновских диагностических установках, как правило, до сих пор изображение органов человека переносится на рентгеновскую фотопленку с высокой разрешающей способностью, обеспечивающей и передачу плотности тканей (в соответствии с уровнем шкалы серого цвета). Поэтому сегодня основное направление развития рентгеновской диагностической техники – разработка воспроизводящих рентгеновское изображение плоских твердотельных экранов, способных заменить рентгеновскую фотопленку и позволяющих в режиме реального времени обрабатывать полученное изображение на компьютере, хранить и пересылать его по компьютерным сетям. Твердотельные датчики рентгеновского и радиационного изображения разрабатывают все ведущие в области микроэлектроники и нанотехнологии фирмы мира. Немалые успехи достигнуты и российскими учеными.

Исследования зарубежных и российских специалистов последних лет показали, что для применения в рентгенотехнике наиболее перспективны твердотельные экраны, построенные на основе полупроводниковых детекторов, содержащих принимающую излучение пиксельную матрицу, и периферийных устройств. При этом в детекторах могут применяться матрицы «прямого» или «непрямого» преобразования рентгеновского излучения. В первом случае детектор содержит рентгеновский фоторезистор, например на основе аморфного селена или кадмий-ртути-теллура, который непосредственно преобразует фотоны рентгеновского излучения в электрический сигнал.

Последние достижения в области микроэлектроники позволили изготавливать на стеклянной подложке размером 50х50 см многослойные матрицы детекторов, содержащие аморфные тонкопленочные транзисторы. Поскольку под действием электрического поля возбужденный в селеновом слое заряд направленно движется к коллектору транзистора, формирующего пиксель, координатное разрешение такого детектора высокое.

Слой аморфного селена может быть нанесен достаточно простым и дешевым методом испарения.

В детекторы (панели) «непрямого» преобразования входят сцинтилляторы, преобразующие рентгеновское излучение в оптическое, которое возбуждает в пиксельной матрице на основе аморфных кремниевых фотодиодов, МОП-транзисторов или ПЗС носители заряда (электроны и дырки). Генерированный заряд накапливается в конденсаторах и затем с помощью транзисторной матрицы последовательно передается на выход детектора для преобразования в цифровой сигнал. Сцинтиллятор детектора может быть выполнен на так называемом структурированном или аморфном материале. В неструктурированном сцинтилляторе свет попадает и в соседний пиксель, что приводит к ухудшению разрешения. Для решения этой проблемы используют структурированный материал на основе цезия (или иодида цезия – CsI), состоящий из трубок шириной ~5–10 мкм, препятствующих боковому распространению света.

Однако рентгеновские панели с тонкопленочными пиксельными матрицами на аморфном кремнии имеют серьезные недостатки. Это – относительно высокий уровень шумов, создаваемых токами утечки транзисторов и диодов на аморфном кремнии, а главное необходимость подключения к каждой строке и столбцу матрицы внешних электронных схем (зарядовых усилителей, мультиплексоров и драйверов), что ограничивает возможности повышения координатного разрешения и удешевления панели. Из-за этих недостатков тонкопленочные экраны, по-видимому, не могут удовлетворять требованиям, предъявляемым к экранам нового поколения.

Ведущими российскими исследовательскими группами НТЦ «Курчатовский институт», Физического института им. Лебедева (ФИАН), Института ядерных исследований (ИЯИ) проведены поисковые работы по созданию элементной базы координатных детекторов нового поколения – так называемых функционально-интегрированных структур [1–12].

Рассмотрим возможную реализацию твердотельных рентгеновских экранов на основе мозаики координатных детекторов, представляющих собой специализированные кремниевые микросхемы, способные непосредственно (или косвенно, с помощью дополнительных полупроводниковых материалов) регистрировать радиационное излучение. Такой подход позволяет достичь экстремально высоких характеристик рентгеновских экранов. Однако, к сожалению, предлагаемое техническое решение имеет существенный недостаток, заключающийся в образовании в рентгеновской панели большого формата так называемой «мертвый зоны», что приводит к появлению на одиночном рентгеновском снимке решетки.

По мере совершенствования технологии изготовления кремниевых чипов размер «мертвой зоны» может быть сведен к минимуму и практически мало влиять на качество изображения. Более того, появление «мертвой зоны» можно легко исключить путем проведения повторного снимка при механическом смещении панели под углом 45 градусов на 1/2 длины пикселя и соответствующей компьютерной обработки полученных снимков. К сожалению, такая процедура приводит к увеличению дозы облучения объекта в два раза. Правда, во многих случаях это допустимо.

Существуют три основных варианта построения мозаичных рентгеновских экранов на основе кремниевых специализированных микросхем координатных детекторов, а именно квантового, аналогового и цифрового. Квантовый детектор [10] создан в результате попытки реализовать теоретически идеальный способ регистрации радиационного (рентгеновского) излучения, о котором с теоретически максимальной точностью известно «все»: энергия, координаты и время прихода. Квантовый детектор представляет собой прямоугольную матрицу функционально-интегрированных биполярных транзисторных структур с двумя эмиттерами. При попадании в транзисторную структуру детектора радиационной частицы-кванта возбуждается, преимущественно в области пространственного заряда, ток ионизации, амплитуда и время нарастания которого регистрируются в цепи питания общего коллектора биполярных транзисторов, образующих пиксели матрицы. Координаты пикселя определяются по появлению электрических сигналов в соответствующих адресных линиях Xi и Yi.

Скорость поступления рентгеновских квантов составляет ~500 квантов/с на пиксель размером 140х140 мкм, т.е. скорость поступления квантов на адресную линию Pх» 2·106 квантов/с [2]. Это на два порядка ниже быстродействия детектора tм, которое определяется двумя параметрами: временем сбора и усиления ионизационного заряда в пикселе tсб» 5 нс и временем распространения сигнала в адресных линиях tр» 5 нс (при длине адресной линии l ~ 1 см), т.е.: