Смекни!
smekni.com

Разработка светодиодной матрицы (стр. 11 из 13)

Уровни звукового давления источников шума, действующих на оператора на его рабочем месте представлены в табл. 4.6.

Таблица 4.6 - Уровни звукового давления различных источников

Источник шума Уровень шума, дБ
Жесткий диск 40
Вентилятор 45
Монитор 17
Клавиатура 10
Принтер 45
Сканер 42

Обычно рабочее место оператора оснащено следующим оборудованием: винчестер в системном блоке, вентилятор(ы) систем охлаждения ПК, монитор, клавиатура, принтер и сканер.

Подставив значения уровня звукового давления для каждого вида оборудования в формулу (4.4) , получим:

∑L=10·lg(104+104,5+101,7+101+104,5+104,2)=49,5 дБ

Полученное значение не превышает допустимый уровень шума для рабочего места оператора, равный 65 дБ (ГОСТ 12.1.003-83). И если учесть, что вряд ли такие периферийные устройства как сканер и принтер будут использоваться одновременно, то эта цифра будет еще ниже. Кроме того при работе принтера непосредственное присутствие оператора необязательно, т.к. принтер снабжен механизмом автоподачи листов.

В данном разделе дипломной работы были изложены требования к рабочему месту инженера - программиста. Созданные условия должны обеспечивать комфортную работу. На основании изученной литературы по данной проблеме, были указаны оптимальные размеры рабочего стола и кресла, рабочей поверхности, а также проведен выбор системы и расчет оптимального освещения производственного помещения, произведен расчет рационального кондиционирования помещения, а также расчет уровня шума на рабочем месте. Соблюдение условий, определяющих оптимальную организацию рабочего места инженера - программиста, позволит сохранить хорошую работоспособность в течение всего рабочего дня, повысит как в количественном, так и в качественном отношениях производительность труда программиста, что в свою очередь будет способствовать быстрейшей разработке и отладке программного продукта.


ВЫВОДЫ

В процессе выполнения дипломной работы было разработано устройство светодиодной матрицы на микроконтроллере. Актуальностью данной темы являлось то, что в процессе проектирования ставилась задача спроектировать устройство, которое не имело бы аналогов и отличалось новизной, простотой и дешевизной.

Было разработано устройство, которое превосходит по выполняемым функциям устройства-аналоги.

В похожих конструкциях наблюдается отсутствие нескольких функций нашего устройства, а главным недостатком нашего устройства является отсутствие внутреннего источника питания, а это в свою очередь вызовет еще повышение стоимости устройства.

В процессе разработки было изучено множество отечественных и зарубежных источников, информация сети Интернет, технические характеристики и принцип действия устройств-аналогов.

Цена рассматривалась при единичном исполнении, цены на комплектующие брались согласно цен интернет-магазинов при покупке одного комплекта, естественно, при оптовом приобретении материалов и комплектующих цена будет ниже.

В процессе разработки был составлен алгоритм управления, программное обеспечение микроконтроллера, произведен расчет элементов электрической схемы, согласно справочных данных.

В разделе «Охрана труда» был произведен расчет освещения помещения, в котором производятся работы на компьютере, рассчитано кондиционирование помещения, рассчитан уровень шума, который образуется при использовании оргтехники.


ПЕРЕЧЕНЬ ССЫЛОК

1. "Dimmable Fluorescent Ballast" – User Guide, 10/07, Atmel Corporation, http://www.atmel.com/dyn/resources/prod_documents/doc7597.pdf

2. ГОСТ13109-97. Нормы качества электрической энергии в системах электроснабжения общего назначения.

3. G. Howell "Five questions about resistors" // EDN, 9/28/2006, http://www.edn.com/contents/images/6372835.pdf

4. П. Хоровиц, У. Хилл "Искусство схемотехники" – Изд. 6-е, М.: Мир, 2003.

5. J. Israelsohn "Miller on edge: The role of Miller capacitance in nonlinear circuits" // EDN, 3/29/2007 http://www.edn.com/contents/images/6426883.pdf

6. C. Hillman "Common mistakes in electronic design" // EDN, 12/14/2007 http://www.edn.com/contents/images/6512156.pdf

7. "The Do's and Don'ts of Using MOS-Gated Transistors" – Application Note AN-936, International Rectifier, http://www.irf.com/technical-info/appnotes/an-936.pdf

8."TVS/Zener Theory and Design Considerations" – Handbook, Rev. 0, Jun−2005, On Semiconductor, http://www.onsemi.com/pub/Collateral/HBD854-D.PDF

9. "Characterization and Calibration of the ADC on an AVR" – Application Note AVR120, 02/06, Atmel Corporation, http://www.atmel.com/dyn/resources/prod_documents/doc2559.pdf

10."The Eye’s Response to Light" – Lutron Electronics, 8/97, http://www.lutron.com/product_technical/pdf/360-408.pdf

11."Four Great Reasons to Dim" – Lutron Electronics, http:// www.lutron.com/dim.htm

12."Frequently asked questions about dimmers" // http://www .lutron.com/product_technical/faq.asp

13."LEDs move from indication to illumination" // EDN, 8/2/2001 http://www.edn.com/contents/images/149134.pdf

14. Л. Н. Кечиев, Е. Д. Пожидаев "Защита электронных средств от воздействия статического электричества" – М.: ИД "Технологии", 2005.

15. Жидецкий В.Ц., Джигирей В.С., Мельников А.В. Основы охраны труда: Учебник – Львов, Афиша, 2008 – 351с.

16. Денисенко Г.Ф. Охрана труда: Учебн.пособие – М., Высшая школа, 1989 – 319с.

17. Самгин Э.Б. Освещение рабочих мест. – М.: МИРЭА, 1989. – 186с.

18. Справочная книга для проектирования электрического освещения. / Под ред. Г.Б. Кнорринга. – Л.: Энергия, 1976.

19. Борьба с шумом на производстве: Справочник / Е.Я. Юдин, Л.А. Борисов;

Под общ. ред. Е.Я. Юдина – М.: Машиностроение, 1985. – 400с., ил.

20. Зинченко В.П. Основы эргономики. – М.: МГУ, 1979. – 179с.

21.Методичні вказівки до виконання дипломної роботи для учнів спеціальності «Оператор комп’ютерного набору; оператор комп’ютерної верстки»/ Упоряд.: Д.О. Дяченко, К.О. Ізмалкова, О.Г. Меркулова. – Сєверодонецьк: СВПУ, 2007. – 40 с.

22. Заец Н.И. Радиолюбительские конструкции на PIC- микроконтроллерах. Книга 1 – М., Солон-ПРЕСС, 2001- 368с.

23. Заец Н.И. Радиолюбительские конструкции на PIC- микроконтроллерах. Книга 2 – М., Солон-ПРЕСС, 2003- 296 с.

24. Заец Н.И. , Сергеев В.С.Радиолюбительские конструкции на микроконтроллерах. Книга 4 – М., Солон-ПРЕСС, 2009 - 412с.


ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ А

Обзор семейств микроконтроллеров PIC

Из всего набора выпускаемых сегодня микроконтроллеров PIC выделяются две наиболее развитые и популярные серии PIC16 и PIC18.
Серия среднего уровня PIC16. Названия микроконтроллеров этой серии начинаются с префикса PIC16. Различные типы микроконтроллеров PIC16 могут исполняться в корпусах, имеющих 14, 18, 28, 40 и более выводов. Это наиболее типичный ряд для PIC16/PIC18 в DIP корпусах. К серии микроконтроллеров PIC16 можно смело отнести микроконтроллеры PIC12 - это те же PIC16, только исполнены в 8 выводном корпусе.

Семейство PIC16 представляет множество недорогих, высокопроизводительных 8-разрялных микроконтроллеров, выполненных по КМОП технологии с очень малым потреблением энергии и полностью статической архитектурой. Представление о семействе можно получить, рассмотрев основу системы обозначений и примеры обозначений микроконтроллеров.

После префикса PIC16, PIC12 или PIC18 следуют обозначение типа (технологии) памяти программ.

Варианты:

- CR - масочное ПЗУ; программируется один раз при изготовлении МК.

- C - EPROM; программируется электрическим способом. Может быть запрограммирована только один раз.

- F - FLASH ПЗУ (EEPROM); запрограммированная память может быть стерта "электрически" и вновь запрограммирована тысячи раз. FLASH микроконтроллеры обычно имеют также и DATA EEPROM - FLASH память данных (не путать с ОЗУ!) для хранения "неоперативных данных", таких, как настроечные параметры, изменяемые константы, тексты.

- JW - ПЗУ стираемое ультрафиолетовым облучением. Корпус таких МК имеет специальное окошко из кварца (WINDOWED).

- Обозначение типа ПЗУ может начинаться с буквы L, которая означает Low Voltage - расширенный вниз, как правило, до 2В диапазон напряжения питания и, как следствие, пониженная максимальная частота.

- LC или LF - EEPROM или FLASH ПЗУ соответственно, допускающее работу при пониженном (LOW) напряжении питания.

Изучение семейства PIC16 целесообразно начинать с наиболее перспективных его представителей. Если не вдаваться в тонкости, то можно утверждать, что масочные, EPROM и FLASH микроконтроллеры практически полностью совместимы по корпусам и выводам, имеют одинаковую архитектуру, электрические и временные характеристики, набор команд и порядок их исполнения. С началом массового выпуска FLASH микроконтроллеров и снижения цен на них, у однократно программируемых микроконтроллеров стало меньше шансов на популярность среди начинающих специалистов. Учитывая это, есть смысл основное внимание уделить именно FLASH микроконтроллерам.После префикса PIC16, PIC12 или PIC18 и обозначения типа (технологии) памяти программ следует комбинация из трех цифр, она определяет собственно тип МК.

Здесь под типом МК понимается комбинация дополнительных свойств МК, как-то: число портов ввода-вывода, объем памяти программ (ПП), памяти данных (ПД), FLASH ПЗУ данных, а главное набор периферийных функций и, следовательно, дополнительных возможностей микроконтроллера.

Например.

- PIC12F629 8-выводной МК с аналоговым компаратором.

- PIC12F675 8- выводной МК с аналоговым компаратором и 10-разрядным АЦП.


ПРИЛОЖЕНИЕ А (Продолжение)

- PIC16F628 18-выводной МК с аналоговыми компараторами, модулем сравнения/захвата/ШИМ и модулем USART (последовательная передача данных по протоколу RS-232C). Стандартный диапазон напряжения питания 3…5,5В, во всем диапазоне тактовой частоты 0…20МГц.

- PIC16LF628 обратите внимание: тип памяти LF, это значит, что МК имеет расширенный диапазон напряжения питания 2…5,5В, при тактовой частоте не более 4МГц, и стандартный диапазон напряжения питания 3…5,5В, при тактовой частоте более 4МГц.

- PIC16F628A буква в конце обозначения типа микроконтроллера указывает на то, что это вариант PIC16F628 с внесенным незначительным изменением архитектуры или технологии, или устраненным замечанием. Если будет еще изменение, то появится вариант PIC16F628В.

После типа МК в его маркировке следуют код -X/XX, где X - температурный диапазон: