С развитием и широким распространением быстродействующих вычислительных машин и аппаратуры дистанционного измерения и передачи данных (телеметрической аппаратуры) наметилась тенденция к полной автоматизации процессов построения математических моделей объектов и созданию адаптивных систем управления, самонастраивающихся микропроцессорных регуляторов для различных технических систем. Так, для идентификации широко привлекаются известные в статистике методы наименьших квадратов, максимального правдоподобия, стохастической аппроксимации и их разновидности [2, 3, 9, 23, 30, 32, 33, 73, 82, 99, 100].
Построение математической модели достаточно сложного объекта представляет собой довольно трудоемкий процесс, включающий этапы выбора вида и структуры модели идентифицируемого объекта, выбора или разработки метода и численных алгоритмов идентификации с учетом возможностей телеметрической аппаратуры и вычислительных средств, предварительной (первичной) обработки результатов телеизмерений, получения оценок характеристик модели, анализа этих оценок и проверки степени идентичности (адекватности) модели и реального объекта. Задача каждого из указанных этапов составляет весьма сложную проблему. Решение ее немыслимо без глубокого знания соответствующих дисциплин и теории. В целом же инженеру, работающему в области идентификации технических объектов, необходимо достаточно свободно ориентироваться в теории вероятностей, современной математической статистике и вычислительной математике, а также иметь представление о теории моделирования, теории управления и принципах построения и функционирования идентифицируемых объектов.
Объекты и системы представляют собой совокупность материальных тел, находящихся в непрерывном взаимодействии друг c другом и с окружающей средой. Построение математической модели объекта может производиться несколькими методами: аналитическим, экспериментальным и экспериментально-аналитическим [49, 57, 73, 100].
Аналитический метод предусматривает получение математического описания объекта на основе законов физики, механики, химии и т. д. Такой подход дает положительный результат, если рассматриваемый объект достаточно прост по структуре и хорошо изучен. Если же объект изучен недостаточно или же настолько сложен, что аналитическое описание его математической моделью практически невозможно, прибегают к экспериментальным методам, суть которых сводится к статистической обработке технологических данных. При экспериментально-аналитическом методе априорная модель, полученная аналитическим путем, уточняется в соответствующих экспериментах.
Взаимодействие объекта с окружающей средой поясним с помощью простейшей схемы (рис. 3.1). Воздействия внешней среды на объект в обобщенном виде изображены стрелками, направленными к объекту и обозначенными через x и v. Объект, в свою очередь, воздействует на окружающую среду. Это воздействие показано стрелкой, направленной от объекта и обозначенной через y. Величину y принято называть выходным воздействием или выходной величиной объекта.
Рассмотрим более подробно воздействие среды на объект. Совокупность таких воздействий окружающего мира на объект можно разделить на две группы в соответствии с характером влияния среды на переменные состояния (фазовые координаты) объекта. В первую группу входят те воздействия, которые в точке приложения изменяют переменные состояния аддитивно. Это означает, что сигналы, пропорциональные этим воздействиям, суммируются с сигналами, пропорциональными соответствующим переменным состояния.
Эти воздействия называют «входными», или «внешними», воздействиями. В дальнейшем будем называть эти воздействия «входными». Входные воздействия могут быть полезными (управляющими сигналами u) и помехами (возмущающими воздействиями f).
Вторая группа воздействий внешней среды изменяет переменные состояния объекта косвенно, обычно не аддитивно. Эти воздействия приводят к изменению оператора объекта (системы) А, под которым понимают закон преобразования входных воздействий в выходные переменные объекта. Вторую группу воздействий будем называть операторной, а воздействия – операторными.
Так, например, повышение температуры электродвигателя приводит к падению мощности и даже выходу его из строя.
В общем случае входные и выходные воздействия могут описываться определенными функциями (обычно функциями времени). Математически соответствие между входной и выходной функциями можно записать в виде выражения
(3.1)где A(f) – оператор, зависящий от возмущений (операторных воздействий);
– вектор выходных координат объекта; – вектор управления (входа).Оператор объекта является его математической характеристикой, т. е. математической моделью объекта.
Примерами операторов могут быть:
– оператор дифференцирования p:
; (3.2)– дифференциальный оператор D(y) :
, (3.3)– оператор обыкновенного линейного дифференциального уравнения n-го порядка L(y)
, (3.4)– линейный интегральный оператор
, (3.5)где
– функция веса объекта;Математически операторы определяются в соответствующих пространствах, т. е. на множествах элементов, над которыми совершаются преобразования. Примерами таких пространств являются пространства: непрерывных функций; непрерывных функций, имеющих непрерывные производные до n-го порядка (n > 0); функций с суммируемым квадратом и т. д. Множества входных и выходных сигналов объектов и систем могут рассматриваться как те или иные метрические пространства [4,12, 13, 37, 44].
Формально оператор характеризуется структурой и параметрами. Так, структура дифференциального оператора (1.3) определяется его порядком n. Для оператора дифференциального уравнения (1.4) структура задается его порядком n, а параметрами служат величины ai(t), [i = 0, n]. Таким образом, задачу идентификации в общем виде можно ставить как задачу определения оператора объекта, преобразующего входные воздействия в выходные.
3.2 Основные задачи идентификации
Рассмотрим различные постановки задачи идентификации. Как уже отмечалось выше, в общем виде задача идентификации заключается в определении оператора объекта, преобразующего входные воздействия в выходные. В связи с этим выделят задачи структурной и параметрической идентификации.
При структурной идентификации определяют структуру и вид оператора объекта, или другими словами вид математической модели объекта.
После того как математическая модель объекта определена, проводят параметрическую идентификацию, заключающуюся в определении числовых параметров математической модели.
Задачей структурной идентификации является представление реального объекта управления в виде математической модели. Конкретный выбор математической модели зависит от типа объекта.
Для описания больших систем и объектов, таких как социальные, производственные, финансово-экономические, используются семиотические (знаковые) и лингвистические модели, базирующиеся на теории множеств и абстрактной алгебры.
В качестве математических моделей технических систем применяются дифференциальные уравнения в обыкновенных и частных производных. Причем при решении задач управления предпочтение отдается моделям в пространстве состояний и структурированным моделям, описываемым дифференциальными уравнениями в обыкновенных производных.
Задачу параметрической идентификации можно сформулировать следующим образом [29]. Пусть имеется полностью наблюдаемый и полностью управляемый объект, задаваемый уравнениями состояния
, (3.6)где B -n-мерный вектор –столбец, а C - n-мерный вектор –строка, А– квадратная матрица размером
. Элементы этих векторов А ВиСнеизвестные числа. Целью идентификации является определение этих чисел.Под идентификацией в дальнейшем будем понимать нахождение параметров моделей объектов, предполагая, что уравнения моделей заранее известны и задаются с помощью обобщенной структурной схемы объекта (рис. 3.2), т.е. будем рассматривать вопросы параметрической идентификации.