где
- постоянные коэффициенты;n - порядок системы.
Для реальных физически реализуемых систем управления m < n .
Подвергая (4.8) преобразованию Лапласа при нулевых начальных условиях получим алгебраическое уравнение, связывающее изображения по Лапласу от входной X(p) и выходной Y(p) величины объекта
, (4.9)где p – оператор Лапласа
Последнее уравнение можно представить в виде:
. (4.10)Это отношение называется передаточной функцией объекта и обозначается символом W(p).
Передаточной функцией системы называется отношение выходной величины к входной, преобразованных по Лапласу при нулевых начальных условиях и возмущениях. Зная передаточную функцию системы или звена можно легко получить дифференциальное уравнение в форме (4.8), справедливо также и обратное утверждение.
Введение векторных переменных при рассмотрении многомерных объектов позволяет для линейных систем использовать привычный аппарат передаточных функций и структурных схем, однако понятие передаточной функции значительно расширяется.
Пусть имеется многомерный объект управления со структурной схемой рис. 4.1 б. По аналогии с одномерными системами (4.9) можно записать:
, (4.11)где Q(p)-квадратная матрица операторных коэффициентов размера
,R(p)- прямоугольная матрица операторных коэффициентов размера
,S(p)- прямоугольная матрица операторных коэффициентов размера
.Для получения системы дифференциальных уравнений необходимо перемножить прямоугольную или квадратную матрицы на матрицы - столбцы соответствующих переменных объекта. Взаимосвязь уравнений состояния (4.6) с уравнениями системы в виде (4.11) определяется из следующих соотношений. Из второго уравнения (4.6) выразим переменную
черези подставим это выражение в первое уравнение (4.6)
. (4.13)Преобразовывая по Лапласу (4.13) и группируя подобные члены, получим выражение аналогичное (4.11).
, (4.14)где
- единичная матрица.Полагая
, а найдем взаимосвязь параметров структурированной модели и модели в пространстве состояний , , . (4.15)По аналогии с одномерными системами, используя основные правила теории матриц, можно ввести понятие матрицы передаточной функции.
Если умножить (4.14) на обратную матрицу
, то получим: (4.16)Отсюда можно получить выражение для матриц передаточных функций системы по управлению
(4.17)и возмущению
(4.18)Как для одномерных, так и для многомерных систем одной и той же матрице передаточной функции может соответствовать несколько вариантов структурных схем и уравнений состояния. Т.е. по уравнениям состояния матрица передаточной функции может быть получена однозначно, обратное утверждение будет неверным. Это связано с тем, что при получении выражения передаточной функции исключаются из рассмотрения все внутренние переменные структурированной модели, которые нельзя уже восстановить по выражению передаточной функции.
4.3 Дискретные модели
При анализе стохастических систем, встречающихся в самых различных областях науки и техники, исходными данными для анализа являются реализации случайного процесса генерируемого этой системой. Полученные в виде графиков, или осциллограмм, реализации случайного процесса обрабатываются и представляются в виде временного ряда. Временной ряд содержит ординаты реализации случайного процесса снятые в дискретные и равноотстоящие моменты времени. Следовательно, о свойствах исходной непрерывной системы судят по результатам цифровой обработки сигналов (временных рядов) формируемых системой. В связи с этим широкое распространение получили цифровые параметрические стохастические модели авторегрессии и скользящего среднего (АРСС-модели). Эти модели достаточно просты и включают обычно небольшое число параметров, которые необходимо оценивать по наблюдениям. АРСС-модели могут быть использованы как для изучения временных рядов, так и при определении статистических характеристик этих рядов. Широко используются такие модели в управлении, экономике, медицине, геофизике, при обработке звуковых сигналов [3, 6, 9, 11, 33, 56, 101].
АРСС процессом порядка (p, q) называется ряд
, (4.19)где v(k) – значения временного ряда в k-й момент времени;
e(k) – последовательность независимых, одинаково распределенных случайных величин с нулевым математическим ожиданием и единичной дисперсией (белый шум);
{ci, i =1, p} –параметры авторегрессии;
{dj, j =1, q} – параметры скользящего среднего.
Частными случаями АРСС (p, q) процессов является процесс АР(p) – авторегрессии порядка p:
, (4.20)и процесс СС(q) – скользящего среднего порядка q:
. (4.21)Уравнения (4.19) и (4.20) описывают рекурсивные фильтры, а уравнение (4.21) – трансверсальный фильтр [38]. Таким образом, процессы АРСС (p, q), АР(p) и СС(q) можно рассматривать как отклики соответствующих линейных фильтров на входной бело-шумный процесс {e(tk)}. Следовательно, условиями стационарности этих процессов являются условия устойчивости соответствующих фильтров: рекурсивный фильтр устойчив, если все корни характеристического уравнения
находятся внутри окружности единичного радиуса [30]. Трансверсальный фильтр порядка q устойчив без ограничения на параметры.
Если в в качестве стохастической системы рассматривается одномерный объект управления, то АРРС- модель объекта примет вид
, (4.22)где y(k), u(k) выходная и входная координаты объекта.
Аналогично (4.19) АР-модель запишется как
, (4.23)а СС-модель
. (4.24)Уравнения (4.22) – (4.24) являются линейными разностными уравнениями объекта управления.
Используя z – преобразование их можно записать в символической форме.
АРСС –модель
, (4.25)АР – модель
, (4.26)СС – модель
, (4.27)где y(z), u(z) иe(z) – z –изображения соответствующих сигналов;
, - коэффициенты уравнения.Вводя дискретную передаточную функцию объекта, как отношение z –изображений сигнала на входе к сигналу на выходе при нулевых начальных условиях можно записать
. (4.28)При наличии запаздывания в объекте равному целому число периодов дискретизации
выражение для дискретной передаточной функции необходимо умножить на