Смекни!
smekni.com

Разработка системы регулирования температуры смазочного масла турбины (стр. 6 из 9)

, (4.8)

где

- постоянные коэффициенты;

n - порядок системы.

Для реальных физически реализуемых систем управления m < n .

Подвергая (4.8) преобразованию Лапласа при нулевых начальных условиях получим алгебраическое уравнение, связывающее изображения по Лапласу от входной X(p) и выходной Y(p) величины объекта

, (4.9)

где p – оператор Лапласа

Последнее уравнение можно представить в виде:

. (4.10)

Это отношение называется передаточной функцией объекта и обозначается символом W(p).

Передаточной функцией системы называется отношение выходной величины к входной, преобразованных по Лапласу при нулевых начальных условиях и возмущениях. Зная передаточную функцию системы или звена можно легко получить дифференциальное уравнение в форме (4.8), справедливо также и обратное утверждение.

Введение векторных переменных при рассмотрении многомерных объектов позволяет для линейных систем использовать привычный аппарат передаточных функций и структурных схем, однако понятие передаточной функции значительно расширяется.

Пусть имеется многомерный объект управления со структурной схемой рис. 4.1 б. По аналогии с одномерными системами (4.9) можно записать:

, (4.11)

где Q(p)-квадратная матрица операторных коэффициентов размера

,

R(p)- прямоугольная матрица операторных коэффициентов размера

,

S(p)- прямоугольная матрица операторных коэффициентов размера

.

Для получения системы дифференциальных уравнений необходимо перемножить прямоугольную или квадратную матрицы на матрицы - столбцы соответствующих переменных объекта. Взаимосвязь уравнений состояния (4.6) с уравнениями системы в виде (4.11) определяется из следующих соотношений. Из второго уравнения (4.6) выразим переменную

через

(4.12)

и подставим это выражение в первое уравнение (4.6)

. (4.13)

Преобразовывая по Лапласу (4.13) и группируя подобные члены, получим выражение аналогичное (4.11).

, (4.14)

где

- единичная матрица.

Полагая

, а
найдем взаимосвязь параметров структурированной модели и модели в пространстве состояний

,
,
. (4.15)

По аналогии с одномерными системами, используя основные правила теории матриц, можно ввести понятие матрицы передаточной функции.

Если умножить (4.14) на обратную матрицу

, то получим:

(4.16)

Отсюда можно получить выражение для матриц передаточных функций системы по управлению

(4.17)

и возмущению

(4.18)

Как для одномерных, так и для многомерных систем одной и той же матрице передаточной функции может соответствовать несколько вариантов структурных схем и уравнений состояния. Т.е. по уравнениям состояния матрица передаточной функции может быть получена однозначно, обратное утверждение будет неверным. Это связано с тем, что при получении выражения передаточной функции исключаются из рассмотрения все внутренние переменные структурированной модели, которые нельзя уже восстановить по выражению передаточной функции.

4.3 Дискретные модели

При анализе стохастических систем, встречающихся в самых различных областях науки и техники, исходными данными для анализа являются реализации случайного процесса генерируемого этой системой. Полученные в виде графиков, или осциллограмм, реализации случайного процесса обрабатываются и представляются в виде временного ряда. Временной ряд содержит ординаты реализации случайного процесса снятые в дискретные и равноотстоящие моменты времени. Следовательно, о свойствах исходной непрерывной системы судят по результатам цифровой обработки сигналов (временных рядов) формируемых системой. В связи с этим широкое распространение получили цифровые параметрические стохастические модели авторегрессии и скользящего среднего (АРСС-модели). Эти модели достаточно просты и включают обычно небольшое число параметров, которые необходимо оценивать по наблюдениям. АРСС-модели могут быть использованы как для изучения временных рядов, так и при определении статистических характеристик этих рядов. Широко используются такие модели в управлении, экономике, медицине, геофизике, при обработке звуковых сигналов [3, 6, 9, 11, 33, 56, 101].

АРСС процессом порядка (p, q) называется ряд

, (4.19)

где v(k) – значения временного ряда в k-й момент времени;

e(k) – последовательность независимых, одинаково распределенных случайных величин с нулевым математическим ожиданием и единичной дисперсией (белый шум);

{ci, i =1, p} –параметры авторегрессии;

{dj, j =1, q} – параметры скользящего среднего.

Частными случаями АРСС (p, q) процессов является процесс АР(p) – авторегрессии порядка p:

, (4.20)

и процесс СС(q) – скользящего среднего порядка q:

. (4.21)

Уравнения (4.19) и (4.20) описывают рекурсивные фильтры, а уравнение (4.21) – трансверсальный фильтр [38]. Таким образом, процессы АРСС (p, q), АР(p) и СС(q) можно рассматривать как отклики соответствующих линейных фильтров на входной бело-шумный процесс {e(tk)}. Следовательно, условиями стационарности этих процессов являются условия устойчивости соответствующих фильтров: рекурсивный фильтр устойчив, если все корни характеристического уравнения

находятся внутри окружности единичного радиуса [30]. Трансверсальный фильтр порядка q устойчив без ограничения на параметры.

Если в в качестве стохастической системы рассматривается одномерный объект управления, то АРРС- модель объекта примет вид

, (4.22)

где y(k), u(k) выходная и входная координаты объекта.

Аналогично (4.19) АР-модель запишется как

, (4.23)

а СС-модель

. (4.24)

Уравнения (4.22) – (4.24) являются линейными разностными уравнениями объекта управления.

Используя z – преобразование их можно записать в символической форме.

АРСС –модель

, (4.25)

АР – модель

, (4.26)

СС – модель

, (4.27)

где y(z), u(z) иe(z)z –изображения соответствующих сигналов;

,
- коэффициенты уравнения.

Вводя дискретную передаточную функцию объекта, как отношение z –изображений сигнала на входе к сигналу на выходе при нулевых начальных условиях можно записать

. (4.28)

При наличии запаздывания в объекте равному целому число периодов дискретизации

выражение для дискретной передаточной функции необходимо умножить на

. (4.29)