В матричном виде эти уравнения запишутся
. (5.10)В том случае если не все компоненты вектора состояния xдоступны измерению, используют специальные устройства (наблюдатели состояния), позволяющие восстановить вектор состояния x по измеренному вектору регулируемых величин y.
Если замыкать обратную связь по регулируемым величинам то закон управления (5.9) преобразуется к виду аналогичному (5.5):
. (5.11)где Wp(p) – матричная передаточная функция регулятора состояния отличная от передаточной функции ПИД-регулятора.
В отличие от ПИД-регулятора регулятор состояния применим для многомерных объектов и обеспечивает лучшее качество регулирования. Однако он сложен в настройке и не обладает свойством грубости (робастности).
Для объектов не требующих высокой точности регулирования можно использовать регуляторы по возмущению. Структурная схема подключения такого регулятора к объекту приведена на рис. 5.1.
Рис. 5.1. Структурная схема системы с регулятором по возмущению.
Если известны передаточные функции объекта по правлению Wu(p)и возмущению Wf(p), то передаточная функция регулятора Wp(p) находится из условия полной компенсации возмущения.
. (5.12)Откуда
. (5.13)Недостатком регуляторов по возмущению является низкая точность регулирования, так как такой регулятор компенсирует действие на объект только контролируемых возмущений.
Достоинства обеих принципов регулирования по отклонению (ошибке) и возмущению совмещаются в комбинированных регуляторах. Рассмотрим структурную схему системы с комбинированным регулятором, компенсирующим динамическую ошибку системы, возникающую от изменения задания
Рис. 5.2. Структурная схема системы с комбинированным регулятором.
Найдем передаточную функцию Wg(p) регулятора по возмущению РВ, обеспечивающую компенсацию задания g в системе условия. Для этого запишем передаточную функцию замкнутой системы по ошибке
. (5.14)Откуда следует, что ошибка будет равна нулю, если We(p)=0, тогда
. (5.15)Позиционные регуляторы, реализующие нелинейные законы регулирования имеют статическую характеристику релейного элемента (рис. 5.3).
Рис. 5.3. Статическая характеристика позиционного регулятора.
Изменяя настройки позиционного регулятора можно получать различные законы регулирования:
- двухпозиционный закон регулирования, имеющий статическую характеристику идеального реле:
- двухпозиционный закон регулирования, имеющий статическую характеристику идеального реле с гистерезисом;
- трехпозиционный закон регулирования, имеющий статическую характеристику идеального реле: с зоной нечувствительности;
- трехпозиционный закон регулирования, имеющий статическую характеристику идеального реле: с зоной нечувствительности и гистерезисом;
Достоинством позиционных регуляторов является простота конструкции и настройки, высокое быстродействие. К недостаткам относятся невысокая точность регулирования и возможность возникновения в системе режима автоколебаний.
Проведем расчет настроек ПИД –регулятора для системы заданной структурной схемой рис. 5.4.
Рис. 5.4.
Если выбрать параметры настройки регулятора из условия равенства числителя передаточной функции регулятора знаменателю передаточной функции объекта
, (5.18)то передаточные функции разомкнутой W(p) и замкнутой Wз(p) системы примут вид
где постоянная времени замкнутой системы
.Характер переходных процессов в системе будет определяться корнями характеристического уравнения, которые в свою очередь зависят от его дискриминанта D
(5.21)Проведем настройку регулятора на границе апериодического и колебательного процесса, которая достигается при D=0. Откуда следует, что
(5.22)Из условия (5.18) вытекают следующие уравнения, связывающие параметры объекта и регулятора
(5.23) (5.24)Для разрешимости системы уравнений (5.22) – (5.23) дополним их условием предельно допустимого значения управления Umax при подаче на вход единичной ступенчатой функции. Значение управления на выходе регулятора найдем из условий теоремы о предельном значении передаточной функции
(5.25)Решая систему уравнений (5.22) - (5.25) найдем неизвестные параметры настройки регулятора
(5.26)Ниже приведен расчет настроек регулятора и показателей качества системы регулирования.
Параметры регулятора
Рис. 5.5. Функция веса объекта и системы с ПИД – регулятором
Рис. 5.6. Переходная характеристика объекта и системы с ПИД – регулятором.
Рис. 5.7. ЛАЧХ и ФЧХ объекта и разомкнутой системы с ПИД – регулятором.
Рис. 5.8. АФЧХ объекта и системы с ПИД – регулятором.
6. Разработка структурной схемы системы
Рис. 6.1. Структурная схема системы
Рис. 6.2. Структурная схема ПИД - регулятора.
Заключение
Таким образом, подводя итог работе, можно отметить, что в ходе её выполнения были определены параметры регулирования системы, включающей в себя нелинейный теплоэнергетический объект (котел для подогрева воды). Были достигнуты следующие результаты:
1. По временным трендам с помощью программы Matlab проведена идентификация данного объекта.
2. Построены все необходимые графики.
3. Рассчитаны показатели качества.
Приложение
clear
% 19-20 Температура смазки dan=xlsread('opertrend');
y=dan(:,19);
u=dan(:,20);
n=length(y);
t=0:3:3*(n-1);
%Вычисление коэффициента передачи
my(1)=y(1);mu(1)=u(1);
for i=2:n
my(i)=my(i-1)+(y(i)-my(i-1))/i;
mu(i)=mu(i-1)+(u(i)-mu(i-1))/i;
ko(i)=my(i)/mu(i);
end
plot(t,ko),grid
%title ('Изменениекоэффициента
передачи объекта')
xlabel ('Time, s')
ylabel ('К')
pause
yc=(y-my');
uc=u-mu';
subplot(2,1,1),grid
plot(t,u),grid
title ('Centeres input signal')
ylabel ('U')
subplot(2,1,2),grid
plot(t,y),grid
title ('Centeres output signal')
xlabel ('Time, s')
ylabel ('Y')
pause
% Анализ сигналов объекта
du=std(u)^2;
dy=std(y)^2;
ru=xcorr(uc,'biased');
ry=xcorr(yc,'biased');
ruy=xcorr(uc,yc,'biased');
tau=-n+1:1:n-1;
subplot (3,1,1)
plot(3*tau,ru),grid
title ('Correlation functions')
ylabel ('Ruu')
subplot(3,1,2)
plot(3*tau,ry),grid
ylabel ('Ryy')
subplot(3,1,3)
plot(3*tau,ruy),grid
xlabel ('Time, s')
ylabel ('Ruy')
pause
[S,f]=psd(uc,n,1/3);
subplot(2,1,1)
plot(f(1:10),S(1:10)/max(S)),grid
title ('Spectrs')
ylabel ('Suu')
[S,f]=psd(yc,n,1/3);
subplot(2,1,2)
plot(f(1:10),S(1:10)/max(S)),grid
xlabel ('Frequencies, Hz')
ylabel ('Syy')
pause
subplot(2,1,1)
hist(u,20),grid
title ('Histograms')
ylabel ('Hu')
subplot(2,1,2)
hist(y,20),grid
xlabel ('Intervals, mm')
ylabel ('Hy')
pause
subplot(1,1,1)
% RMNK
m=2;
clear Tp
P=1000*eye(2*m,2*m);
Q=zeros(2*m,1);
F=Q;
for i=1:n-m
F=[-yc(i+m-1:-1:i);uc(i+m-1:-1:i)];
ch=P*F;
zn=1+F'*P*F;
gm=ch/zn;
P=(eye(2*m)-gm*F')*P;
Q=Q+gm*(yc(m+i)-F'*Q);