Смекни!
smekni.com

Разработка системы управления кондиционером (стр. 5 из 9)

Рисунок 14 - Формат регистров Тн и TL.

Формат регистра конфигурации приведен на рисунке 15. Для изменения конфигурации используются только два разряда этого Регистра — бит 5 и бит 6. Значения остальных битов показаны на рисунке. В таблице 2 представлены все четыре режима, которые можно установить при помощи регистра конфигурации. Номер режима определяется разрядами RO и R1. При отключении лишних разрядов уменьшается точность измерения температуры, но одноименно уменьшается и время, необходимое для преобразования температуры в код. В таблице 2 для каждого из режимов работы приведено максимальное значение времени преобразования.

Бит 7 Бит 6 Бит 5 Бит 4 Бит 3 Бит 2 Бит 1 Бит 0
0 R1 R0 1 1 1 1 1

Рисунок 15 - Формат регистра конфигурации

Таблица 2 - Выбор количества разрядов

На рисунке 16 показана схема включения микросхем DSI8B20 врежиме внешнего питания. Внешнее питание подается через вывод VDD. Если термодатчик находится на значительном удалении от микроконтроллера, то применен такой схемы включения не очень желательно, так как для питания датчика придется прокладывать еще один (третий) провод.

Второй вариант включения микросхем DSI8B20 изображен на рисунке 17. В такой схеме реализованы два режима питания. Для переключения режимов используется управляемый электронный ключ KI. Ключ управляется от микроконтроллера, для чего используется отдельная линия ввода/вывода. Такая схема позволяет переключать режимы питания программным путем. Основной режим работы для схемы, изображенной на рисунке 17 - это режим паразитного питания. В этом режиме ключ KI закрыт и напряжении на шине определяется резистором нагрузки R1, что позволяет передавать информацию по шине, используя 1-Wire протокол.

В нужный момент ключ KI открывается и на шину поступает полноценное питание от источника VPU. Питание поступает только на время выполнения одной из энергоемких команд. Пока ключ К1 открыт, информационный обмен по шине невозможен. Микроконтроллер выдерживает шину в таком состоянии необходимое время, а затем закрывает ключ К1. Шина возвращается в обычный режим работы и снова обретает возможность передачи данных. Для того, чтобы микросхема DSI8B20 правильно работала в режиме паразитного питания, нужно соединить между собой выводы VDDи GND и подключить оба этих вывода к общему проводу, как показано на рисунке.

Рисунок 16 - Схема включения термодатчика в режиме внешнего питания

Рисунок 17 - Схема включения термодатчика в режиме паразитного питания

На рисунке 18показана схема включая вспомогательной цепи и цепи питания. Роль однопроводной шины выполняет линия Р1.1 микроконтроллера. Резистор R2 — это нагрузочный резистор шины. Рекомендованное значение номинала этого резистора 4,7 кОм. Электронный ключ для переключения режима питания собран на элементах VT1, R3, R4 и R5. Микроконтроллер управляет ключом при помощи линии Р1.0. Резистор R5 служит для ограничения тока базы транзистора VT1. Резистор R4 введен для надежного закрывания транзистора. Резистор R3 — страховочный. Он служит для ограничения тока при коротком замыкании в цепи датчика.

Рисунок 18 - Схема включения вспомогательной цепи и цепи питания

2.5 Система команд транспортного уровня микросхемы DSI8B20

Система команд транспортного уровня микросхемы DSI8B20 представлена в таблице 3:

Таблица 3 – Система команд транспортного уровня микросхемы DS18B20

Код команды Описание
4EH Запись блокнотной памяти
0BEH Чтение блокнотной памяти
0B4H Чтение режима питания
0B8H Чтение из EEPROM в блокнотную память
48H Копирование блокнотной памяти в EEPROM
44H Запуск процесса преобразования

В данном проекте используется внешний режим питания микросхемы, поэтому команда «Чтение режима питания» (0B4H) не используется.

Команда «Запись блокнотной памяти» (WriteScratchpad). При выполнении этой команды микроконтроллер выдает на шину следующие сигналы:

-сигнал начального сброса;

-команду сетевого уровня «Пропуск ПЗУ»(0ССН);

-код операции Запись блокнотной памяти» (4EH);

-восемь байт для записи во все восемь регистров этой памяти.

Микросхема DS18B20 принимает все эти данные и записывает в регистры памяти.

Команда «Чтение блокнотной памяти» (ReadScratchpad). При выполнении этой команды микроконтроллер выдает на шину следующие сигналы:

-сигнал начального сброса;

-команду сетевого уровня «Пропуск ПЗУ»(0ССН);

-код операции «Чтение блокнотной памяти» (0ВEH);

Затем он считывает восемь байт данных из блокнотной памяти.

Команда «Чтение из EEPROM в блокнотную память» (RecallE2).

Команда служит для переноса информации из EEPROM в блокнотную память. Для выполнения этой команды микроконтроллер производит следующие действия:

-выдает на шину сигнал начального сброса;

-выдает команду сетевого уровня «Пропуск ПЗУ»(0ССН);

-выдает код операции «из EEPROM в блокнотную память» (0B8H).

Сразу после получения этой команды содержимое EEPROM копируется в блокнотную память. Эта команда выполняется автоматически каждый раз после включения питания.

Команда «Копирование блокнотной памяти в EEPROM» (CopyScratchpad). При выполнении этой команды микроконтроллер выдает на шину следующие сигналы:

-сигнал начального сброса;

-команду сетевого уровня «Пропуск ПЗУ»(0ССН);

-код операции «Копирование блокнотной памяти в EEPROM» (48H);

-выполняет процедуру ожидания конца операции.

В результате выполнения этой операции содержимое блокнотной памяти копируется в EEPROM.

Команда «Запуск процесса преобразования» (ConvertT). При выполнении этой команды микроконтроллер выдает на шину следующие сигналы:

-сигнал начального сброса;

-команду сетевого уровня «Пропуск ПЗУ»(0ССН);

-код операции «Запуск процесса преобразования» (44H);

-выполняет процедуру ожидания конца операции.

В результате выполнения этой команды измеренная температура преобразуется в код. Полученный код помещается в соответствующий регистр микросхемы DS18B20.

Длительность процедуры ожидания определяется сигналом готовности. Сигнал готовности формируется следующим образом. Как только микросхема термодатчика начинает выполнять одну из команд «Копирование блокнотной памяти в EEPROM» или «Запуск процесса преобразования», она «подсаживает» 1-Wire шину. Микроконтроллер проверяет уровень сигнала на шине. Обнаружив нулевой сигнал, он переходит в режим ожидания. Режим ожидания продолжается до тех пор, пока микросхема термодатчика не «отпустит» шину.

2.6 Выбор вентилятора

В кондиционерах применяются вентиляторы с крыльчаткой тангенциального типа [1], поток воздуха в которых поступает в крыльчатку с одной стороны, а выходит с другой, изменив направление своего движения.

Поперечное сечение такого вентилятора показано на рисунке 19. Срыв потока с кромок лопаток крыльчатки приводит к образованию ядра завихрения, служащего источником шума и гидравлических потерь устройства. Для обеспечения максимального акустического комфорта при работе кондиционера и максимальной дальнобойности воздушной струи фирмы-производители уделяют большое внимание отработке конфигурации направляющего аппарата.

Рисунок 19 - Вентилятор кондиционера

В ряде моделей кондиционеров Daikin и Toshiba крыльчатка вентилятора имеет переменный шаг лопастей, что исключает возможность возникновения резонансных частот и связанного с ними шума.

Конструкторы кондиционеров стараются увеличить диаметр крыльчатки вентилятора, чтобы при том же расходе воздуха снизить его скорость. Чтобы избежать возникновения пульсаций воздушного потока на резонансных частотах, лопатки вентилятора располагают под разными углами к оси вращения. Характеристики выбранного вентилятора приведены в таблице 4.

Таблица 4 - Характеристики вентилятора

Тип Центробежный
Диаметр / длина крыльчатки, мм 70/598
Модель двигателя YDK10-2A
Количество полюсов 2
Максимальная скорость вращения, об/мин 1950
Номинальная выходная мощность, Вт 10
Сопротивление обмоток, Ом (при 20°С).Цвет изоляции выводов:«Белый – серый»«Белый – розовый» 410±10%301±10%
Устройство безопасности Тип Внутренний термопредохранитель
Температура срабатыания, °С 145±8
Управляющий конденсатор Емкость, мкФ 1,0
Мощность, ВА 450

2.7 Выбор компрессора

В бытовых и полупромышленных кондиционерах в настоящее время используются три основных типа компрессоров — ротационный, спиральный и поршневой, причем на долю ротационных компрессоров приходится около 90%. Так из 23 млн. компрессоров, проданных по всему миру в 1995 г. для применения в климатических системах, более 20 млн. были ротационного типа. В климатических системах большой мощности (от 160 до 3500 кВт) применяются винтовые компрессоры. Ротационные компрессоры (рисунок 20) осуществляют всасывание и сжатие газа с помощью вращающегося на валу ротора. За счет вращательного движения рабочих органов в компрессорах этого типа (также как в спиральных и винтовых) существенно снижены пульсации давления и пусковые токи.