Смекни!
smekni.com

Разработка системы управления многосвязных систем автоматического регулирования исполнительного уровня (стр. 5 из 7)


Рисунок 1.20 – Детализирванная до уровня одномерных звеньев структурная схема разомкнутой МСАР

Передаточную функцию обратной перекрестной связи Wx1(p) определим из условия равенства нулю суммы передаточных функций двух каналов распространения сигнала ε1(p) до второго выхода МОУ.

.

Аналогично определим и передаточную функцию Wx2(p):

.

Определим вид автономности системы. Для этого сравним передаточные функции разомкнутых автономных и сепаратных каналов регулирования.

Передаточная функция разомкнутой системы с учетом перекрестных связей имеет вид:

(1.22)

Передаточная матрица разомкнутой системы без учета перекрестных связей:

Соответствующие передаточные функции разомкнутых автономных и сепаратных каналов регулирования совпадают, а, следовательно, совпадают и свойства этих каналов. Значит, наблюдается абсолютная автономность каналов.

Исследование частотных и временных характеристик автономных каналов МСАР

1) МСАР с прямыми перекрестными связями в компенсаторе

Запишем передаточную матрицу замкнутой системы.

,

где W(p) – передаточная матрица разомкнутой системы (1.21), определенная в пункте 1.4.1 (1)

Рассматриваемая передаточная матрица имеет вид:

.

где

,
– передаточные функции замкнутых автономных каналов регулирования.

Построим АЧХ для каждого из автономных каналов (Приложение 7а)

Рисунок 1.21 – АЧХ замкнутых автономных каналов регулирования

Определим показатель колебательности по формуле (1.2):

Построим переходные характеристики (рисунок 1.22) для каждого из автономных каналов регулирования (Приложение 7б).

По графикам переходных функций видно, что переходный процесс расходится.


Рисунок 1.22 – Переходные характеристики автономных каналов регулирования

2) МСАР с обратными перекрестными связями в компенсаторе

Поскольку в п. 1.4.1 доказано, что при включении последовательного компенсатора с обратными перекрестными связями наблюдается абсолютная автономность каналов регулирования, то характеристики автономных каналов регулирования совпадают с аналогичными характеристиками сепаратных каналов.

Проверим это моделированием МСАР в программном пакете MATLAB. Получим переходные характеристики автономных каналов МСАР с обратными перекрестными связями.

Рисунок 1.23 – Переходные характеристики автономных каналов регулирования МСАР с обратными ПС


Определим время переходного процесса и перерегулирования по графикам.

Отметим, что значения прямых показателей качества переходного процесса автономных каналов МСАР с обратными перекрестными связями совпадают с аналогичными показателями сепаратных каналов.

Поскольку исходная МСАР неустойчива, говорить о прямых показателях качества системы некорректно.

Устойчивость автономной МСАР

Передаточная матрица разомкнутой системы определена в п. 1.4.1.

Используя передаточные функции разомкнутых автономных каналов регулирования построим ЛЧХ для каждого из случаев перекрестных связей и определим запасы устойчивости автономных каналов регулирования.

1) МСАР с прямыми перекрестными связями в компенсаторе

С помощью программного пакета MathCad построим графики ЛЧХ для каждого из разомкнутых каналов регулирования (Приложение 9а).

По графикам ЛЧХ (рисунок 1.24) видно, что критическая частота меньше частоты среза, следовательно, автономные каналы регулирования с прямыми перекрестными связями в компенсаторе неустойчивы, а, следовательно, неустойчива и рассматриваемая МСАР.

Добьемся устойчивости автономных каналов регулирования.

Рассматриваемые выше сепаратные каналы устойчивы и удовлетворяют требованиям ТЗ по точности, быстродействию и колебательности.

Передаточные функции каждого из сепаратных каналов в общем виде записываются:

,

;

Рисунок 1.24 – ЛЧХ автономных каналов регулирования МСАР с прямыми ПС в компенсаторе

Сравним их с передаточными функциями автономных каналов регулирования, которые имеют вид:

Отметим, что если ввести в цепь каждого автономного канала такое корректирующее устройство, которое компенсировало бы множитель

, то передаточные функции автономных каналов регулирования совпадут с передаточными функциями сепаратных каналов, будет наблюдаться абсолютная автономность каналов МСАР и следующее из этого удовлетворение рассматриваемыми каналами требований ТЗ.

Таким корректирующим устройством будет включенный последовательно в цепь контур следующего вида:

Представим структурную схему скорректированной МСАР с прямыми перекрестными связями в компенсаторе.

Рисунок 1.25 – Детализированная до уровня одномерных звеньев структурная схема скорректированной МСАР с прямыми ПС

Построим ЛЧХ автономных каналов регулирования. (Рисунок 1.26).

Определим запасы устойчивости.

Поскольку введением корректирующего контура удалось добиться абсолютной автономности системы, запасы устойчивости автономных каналов регулирования МСАР с прямыми перекрестными связями совпадают с запасами устойчивости сепаратных каналов регулирования.

Из устойчивости автономных каналов регулирования следует устойчивость и рассматриваемой МСАР.

Рисунок 1.26 – – ЛЧХ автономных каналов регулирования с МСАР с прямыми ПС в компенсаторе

2) МСАР с обратными перекрестными связями в компенсаторе

С помощью программного пакета MathCad построим графики ЛЧХ для каждого из разомкнутых каналов регулирования (Приложение 9б).

По графикам ЛЧХ видно, что критическая частота больше частоты среза, следовательно, автономные каналы регулирования с обратными перекрестными связями в компенсаторе устойчивы.

Определим запасы устойчивости.


Рисунок 1.24 – ЛЧХ автономных каналов регулирования

Поскольку в п. 1.4.1 доказано, что при включении последовательного компенсатора с обратными перекрестными связями наблюдается абсолютная автономность каналов регулирования, то запасы устойчивости автономных каналов регулирования совпадают с запасами устойчивости сепаратных каналов.

Из устойчивости автономных каналов регулирования следует устойчивость и всей рассматриваемой МСАР.

Показатели точности в виде амплитудных искажений на частоте w1=9.9c-1 для сепаратных каналов регулирования были определены в п. 1.2.2. Эти величины совпадают с амплитудными искажениями автономных каналов регулирования МСАР с обратными перекрестными связями в компенсаторе и прямыми перекрестными связями в компенсаторе с учетом корректировки, так как в данных случаях наблюдается абсолютная автономность каналов регулирования.