Смекни!
smekni.com

Разработка узла компаратора регулятора напряжения (стр. 2 из 3)

Напряжение на эмиттере транзистора VТ8 равно:

(2.7)

Напряжение на коллекторе транзистора VТ8 (выход компаратора) равно также 1,4В. Отсюда следует, что транзистор VТ8 работает в режиме, близком к режиму насыщения. Для перевода его в активный режим, в цепь эмиттера VТ13 включим транзистор в диодном включении, повышающий потенциал на эмиттере VТ8 до 2,1В. Такой же транзистор включим в цепь эмиттера транзистораVТ2.

В качестве выходного стабилизатора выберем схему параметрического стабилизатора на стабилитроне Э – Б. В качестве источника тока для стабилизатора выберем схему токового зеркала (рисунок 2.5).

Рисунок 2.6 – Параметрический стабилизатор.

Выходное напряжение данной схемы будет равно напряжению пробоя стабилитрона VB на обратносмещенном p – n переходе Э – Б. (VB = 6,5В.)

Стабилизатор должен выдавать ток IO = 10мА начиная с напряжения VS = 10В (при запуске двигателя, когда работает стартер). Этот ток протекает через транзистор VТ19. Выберем ток через VТ18 равным 500мкА (При большем токе резко падает βpnp). Тогда коэффициент отражения токового зеркала на транзисторах VТ19 и VТ18 равен:

Рассчитаем номинал резистора R5:

(2.9)

где:

— напряжение насыщения транзистора VТ17 (равно
0,7В).

Окончательный вид схемы приведен в приложении А.

Рассчитаем все токи и напряжения в схеме в приложении А:


Транзисторы VТ5, VТ6, VТ10 и VТ11 будут иметь равные площади: S5 = = S6 = S10 = S11. Также S8 = S12 и S7 = S13, S4 = S16, S3 = S15.

Такой же ток втекает в базы транзисторов VT17 и VT21.

IT12 = IT10 и IT13 = IT11, IT7 = IT5, IT8 = IT6.

В итоге общий ток потребления схемы:


3 Разработка топологии

Физическая структура и ее параметры определяются требованиями, предъявляемыми к наиболее важному транзистору (группе транзисторов).

Микросхемы на основе биполярных транзисторов (рисунок 3.1.) имеют следующие слои: эмиттерный, базовый, скрытый n+-слой – диффузионные и коллекторный (эпитаксиальный) слои; подложка p-типа (при изоляции p-n переходом).

Рисунок 3.1 - Физическая структура биполярного n-p-n транзистора на основе подложки p-типа, с эпитаксиальным слоем и со скрытым слоем n+-типа.

Рисунок 3.2 – Топология n-p-n транзистора в общем виде.


Электрическая принципиальная схема компаратора напряжения приведена в ПРИЛОЖЕНИЕ А. Для этой схемы были рассчитаны номиналы резисторов и максимальные токи через транзисторы (коллекторные токи).

IT1= 0,2 мА, IT12= 30 мкА,

IT2= 20 мкА, IT13= 30 мкА,

IT3= 26 мкА, IT14= 20 мкА,

IT4= 26 мкА, IT15= 26 мкА,

IT5= 30 мкА, IT16= 26 мкА,

IT6= 30 мкА, IT17= 30 мкА,

IT7= 30 мкА, IT18= 100 мкА,

IT8= 30 мкА, IT19= 0,5 мА,

IT9= 60 мкА, IT20= 10 мА,

IT10= 30 мкА, IT21= 0,5 мА,

IT11= 30 мкА, IT22= 0,5 мА.

Так как для данной схемы коэффициенты усиления транзисторов (h21) незначительно влияют на параметры схемы то при расчете геометрических размеров h21 транзисторов учитывать не будем, но выберем структуру обеспечивающую как можно больший h21. То есть предполагаем структуру со скрытым n+ - слоем.

Расчет n-p-n транзисторов. Исходя из того, что не заданы многие параметры, позволяющие произвести более точный расчет, ограничимся некоторым приближенным расчетом.

Токовые характеристики транзисторов определяет в основном периметр эмиттера, к тому же эмиттерная область является наименьшей в интегральных транзисторах, поэтому расчет начнем с этой области.

Для расчета периметра эмиттерной области воспользуемся следующей эмпирической формулой [2]:

(3.1), где IКмакс = IЭмакс –максимально допустимый ток эмиттера, мА; ПЭф - эффективный периметр эмиттера, мкм.

Эффективный периметр эмиттера зависит от конфигурации транзистора. Для маломощных транзисторов выберем асимметричную конфигурацию (рисунок 3.3), для которой эффективный периметр равен ширине эмиттера (ПЭф=BЭ) [1].

Рисунок 3.3 – Асимметричная конфигурация n-p-n транзистора.

Выберем данную конфигурацию для транзисторов VT3, VT7, VT8, VT12, VT13, VT15, VT17 исходя из заданных значений коллекторных токов.

Транзисторы VT3, VT7, VT8, VT12, VT13, VT15, VT17 будут иметь минимально возможные размеры топологии, так как их коллекторных токи очень малы.

Произведем расчет топологии приведенных транзисторов. Размеры эмиттерной области для этого случая будут определяться как (LЭК= D, D - минимальный размер окна в окисле) [1]:

Ширину базового контакта возьмем равной ширине эмиттерной области:

Расстояние от эмиттерной области до контакта к базе определим как:

Но это расстояние определяется также возможностью осуществить разводку металла от эмиттера и от базы. Металл должен перекрывать окно в окисле не менее чем на 2 мкм, к тому же расстояние между двумя соседними проводниками должно составлять не менее чем 6 мкм. Исходя из этого расстояние L2 = 8 мкм.

Рассчитаем ширину базовой области:

Возьмем BБ = 26 мкм.

Рассчитаем длину базовой области:

Определим расстояние от базовой области до области n+ - подлигирования для создания контакта к коллектору:

Здесь d - зазор, который нужно предусмотреть, чтобы не сомкнулись базовая область и область n+ подлигирования к коллектору при расширении ОПЗ соответствующих переходов. Обычно для данного расстояния d = xjЭ + xjБ,


Возьмем L5 = 8 мкм.

Длину n+ -области подлигирования для коллекторного контакта определим как:

Ширину этой n+- области для данной конфигурации транзистора примем равной ширине базовой области:

.

Ширина контакта к коллектору определяется как:

Расстояние от n+ -области подлигирования до разделительной области определим как:

где d - зазор, который нужно предусмотреть, чтобы не сомкнулись разделительная область и область n+ подлигирования к коллектору при расширении ОПЗ соответствующих переходов. Обычно для данного расстояния d » 0,8×hepi.

Подобно определим расстояние от базовой области до разделения:

Примем L6 = L7 = 16 мкм.

Тогда B2 = B3 = L7 = 17 мкм.

Определим максимальный ток, который может обеспечить рассчитанная конфигурация транзистора в соответствии с формулой (3.1):

Рассчитаем топологию p-n-p транзистора.

Для p-n-p транзистора выберем следующую конфигурацию (рисунок 3.4).

Рисунок 3.4 – Топология горизонтального p-n-p транзистора.

Через транзисторы VT4 и VT16 p-n-p типа течет ток, который может обеспечить конфигурация с минимальными возможными размерами, для этого случая и проведем расчет.

При минимальных размерах, размеры эмиттерной области будут как у n-p-n транзистора (рисунок 2.3) то есть LЭ = BЭ = 16 мкм.

Расстояние B2 которое будет шириной активной базы рассчитывается как:

где d - зазор, который необходимо предусмотреть, чтобы при расширении ОПЗ коллекторного и эмиттерного переходов не произошло их смыкания