Елабужский Филиал Казанского Государственного Технического Университета им. А.Н. Туполева
Курсовая работа
по дисциплине:
"Схемотехника"
на тему:
"Разработка функциональной схемы конечного автомата"
Выполнила: студентка 3 курса
группы 22304 Шакирова Г.Р.
Проверила: Калганова Е.С.
Елабуга 2009
Содержание
Абстрактный синтез
Автомат Мили
Структурный синтез
Кодирование состояний автомата
Таблица кодирования входных сигналов
Таблица кодирования выходных сигналов
Таблица переходов и выходов абстрактного автомата
Товары стоимостью 3 и 7 рублей, принимаемые монеты достоинством 1 и 2 рубля.
1-й товар:
1+1+1
1+1+2 (сдача 1 руб.)
1+2
2+1
2+2 (сдача 1 руб.)
2-й товар:
1+1+1+1+1+1+1
2+1+1+1+1+1
1+2+1+1+1+1
1+1+2+1+1+1
1+1+1+2+1+1
1+1+1+1+2+1
1+1+1+1+1+2
2+2+1+1+1
2+1+2+1+1
2+1+1+2+1
2+1+1+1+2
1+2+2+1+1
1+1+2+2+1
1+1+1+2+2
1+2+1+2+1
2+2+2+1
1+2+2+2
2+1+2+2
2+2+1+2
2+2+2+2 (сдача 1 руб.)
1+1+1+1+1+1+2 (сдача 1 руб.)
1+1+1+2+1+2 (сдача 1 руб.)
1+1+2+1+1+2 (сдача 1 руб.)
1+2+1+1+1+2 (сдача 1 руб.)
2+1+1+1+1+2 (сдача 1 руб.)
1+1+1+1+2+2 (сдача 1 руб.)
X= (x1, x2, x3, x4) - множество входных сигналов
x1 - выбор 1-го товара
x2 - выбор 2-го товара
x3 - бросок 1 рубля в монетоприемник
x4 - бросок 2 рублей в монетоприемник
Y= (y0, y1, y2, y3; y4, y5) - множество выходных сигналов
y0 - ожидание выбора товара, щель монетоприемника закрыта
y1 - идет прием денег
y2 - выдача 2-го товара без сдачи
y3 - выдача 2-го товара со сдачей 1 руб.
y4 - выдача 1-го товара
y5 - выдача 1-го товара со сдачей 1 руб.
A= (a0, a1, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14) - множество состояний
a0 - начальное состояние
a1 - выбран 1-ый товар, в автомате 0 руб.
a2 - выбран 1-ый товар, в автомате 1 руб.
a3 - выбран 1-ый товар, в автомате 2 руб.
a4 - выбран 1-ый товар, в автомате 3 руб. - выдача 1-го товара
a5 - выбран 1-ый товар, в автомате 4 руб. - выдача 1-го товара со сдачей 1 руб.
a6 - выбран 2-ой товар, в автомате 0 руб.
a7 - выбран 2-ой товар, в автомате 1 руб.
a8 - выбран 2-ой товар, в автомате 2 руб.
a9 - выбран 2-ой товар, в автомате 3 руб.
a10 - выбран 2-ой товар, в автомате 4 руб.
a11 - выбран 2-ой товар, в автомате 5 руб.
a12 - выбран 2-ой товар, в автомате 6 руб.
a13 - выбран 2-ой товар, в автомате 7 руб. - выдача 2-го товара
a14 - выбран 2-ой товар, в автомате 8 руб. - выдача 2-го товара со сдачей 1 руб.
Запишем алгоритм работы автомата Мили в табличном виде.
ai - состояния абстрактного автомата, xj- входные сигналы абстрактного автомата
Таблица № 1 | |||||||||||||||
aixj | a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 | a13 | a14 |
x1 | a1y1 | a1y1 | a2y1 | a3y1 | a0y0 | a0y0 | a6y1 | a7y1 | a8y1 | a9y1 | a10y1 | a11y1 | a12y1 | a0y0 | a0y0 |
x2 | a2y1 | a1y1 | a2y1 | a3y1 | a0y0 | a0y0 | a6y1 | a7y1 | a8y1 | a9y1 | a10y1 | a11y1 | a12y1 | a0y0 | a0y0 |
x3 | a0y0 | a2y1 | a3y1 | a4y4 | a0y0 | a0y0 | a7y1 | a8y1 | a9y1 | a10y1 | a11y1 | a12y1 | a13y2 | a0y0 | a0y0 |
x4 | a0y0 | a3y1 | a4y4 | a5y5 | a0y0 | a0y0 | a8y1 | a9y1 | a10y1 | a11y1 | a12y1 | a13y1 | a14y3 | a0y0 | a0y0 |
Запишем алгоритм работы автомата Мили, используя графический способ задания автомата.
Рисунок № 1
R =] log215 [=4 - количество элементов памяти
L=] log24 [=2 - количество входных каналов
N=] log26 [=3 - количество выходных каналов
Синтез автомата Мили будем проводить на Т-триггерах.
Т-триггер (триггер со счетным входом) имеет один вход. Он "переворачивается", изменяя свое состояние, каждый раз, когда на его вход поступает сигнал, соответствующий логической единице.
При поступлении фронта импульса значение входного напряжения изменяет значение с уровня, равного логическому нулю, на значение, равное логической единице. При поступлении среза импульса значение входного напряжения изменяет значение с уровня, равного логической единице, на значение, равное уровню логического нуля.
Qk- состояния элементарного автомата, ai - состояния абстрактного автомата
Таблица № 2 | ||||
Qkai | Q1 | Q2 | Q3 | Q4 |
a0 | 0 | 0 | 0 | 0 |
a1 | 0 | 0 | 0 | 1 |
a2 | 0 | 0 | 1 | 0 |
a3 | 0 | 0 | 1 | 1 |
a4 | 0 | 1 | 0 | 0 |
a5 | 0 | 1 | 0 | 1 |
а6 | 0 | 1 | 1 | 0 |
а7 | 0 | 1 | 1 | 1 |
а8 | 1 | 0 | 0 | 0 |
а9 | 1 | 0 | 0 | 1 |
а10 | 1 | 0 | 1 | 0 |
а11 | 1 | 0 | 1 | 1 |
а12 | 1 | 1 | 0 | 0 |
а13 | 1 | 1 | 0 | 1 |
а14 | 1 | 1 | 1 | 0 |
αm- входные сигналы структурного автомата, xj- входные сигналы абстрактного автомата
Таблица № 3 | ||
αmxj | α1 | α2 |
x1 | 0 | 0 |
x2 | 0 | 1 |
x3 | 1 | 0 |
x4 | 1 | 1 |
zp- выходные сигналы структурного автомата, ys- входные сигналы абстрактного автомата
Таблица № 4 | |||
zpys | z1 | z2 | z3 |
y0 | 0 | 0 | 0 |
y1 | 0 | 0 | 1 |
y2 | 0 | 1 | 0 |
y3 | 0 | 1 | 1 |
y4 | 1 | 0 | 0 |
y5 | 1 | 0 | 1 |
ai - состояния абстрактного автомата, xj - входные сигналы абстрактного автомата
Таблица № 5 | ||||||||
aixj | a00000 | a10001 | a20010 | a30011 | a40100 | a50101 | a60110 | a70111 |
00 | 0001001 | 0001001 | 0010001 | 0011001 | 0000000 | 0000000 | 0110001 | 0111001 |
01 | 0010001 | 0001001 | 0010001 | 0011001 | 0000000 | 0000000 | 0110001 | 0111001 |
10 | 0000000 | 0010001 | 0011001 | 0100100 | 0000000 | 0000000 | 0111001 | 1000001 |
11 | 0000000 | 0011001 | 0100100 | 0101101 | 0000000 | 0000000 | 1000001 | 1001001 |
Таблица № 5 (продолжение) | |||||||
aiαm | a81000 | a91001 | a101010 | a111011 | a121100 | a131101 | a141110 |
00 | 1000001 | 1001001 | 1010001 | 1011001 | 1100001 | 0000000 | 0000000 |
01 | 1000001 | 1001001 | 110001 | 1011001 | 1100001 | 0000000 | 0000000 |
10 | 1001001 | 1010001 | 1011001 | 1100010 | 1101010 | 0000000 | 0000000 |
11 | 1010001 | 1011001 | 1100001 | 1101001 | 1110011 | 0000000 | 0000000 |
Таблица № 6 | ||||||||||||||||
α1 | α2 | Q1 | Q2 | Q3 | Q4 | Q1 (t+1) | Q2 (t+1) | Q3 (t+1) | Q4 (t+1) | z1 | z2 | z3 | T1 | T2 | T3 | T4 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - |
Т1 Таблица № 7 | ||||||||||||||||
Qkαm | 0000 | 0001 | 0011 | 0010 | 0110 | 0111 | 0101 | 0100 | 1100 | 1101 | 1111 | 1110 | 1010 | 1011 | 1001 | 1000 |
00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | - | 1 | 0 | 0 | 0 | 0 |
01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | - | 1 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | - | 1 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | - | 1 | 0 | 0 | 0 | 0 |
Т2 Таблица № 8 | ||||||||||||||||
Qkαm | 0000 | 0001 | 0011 | 0010 | 0110 | 0111 | 0101 | 0100 | 1100 | 1101 | 1111 | 1110 | 1010 | 1011 | 1001 | 1000 |
00 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | - | 1 | 0 | 0 | 0 | 0 |
01 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | - | 1 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | - | 1 | 1 | 1 | 0 | 0 |
10 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | - | 1 | 0 | 1 | 0 | 0 |
Т3 Таблица № 9 | ||||||||||||||||
Qkαm | 0000 | 0001 | 0011 | 0010 | 0110 | 0111 | 0101 | 0100 | 1100 | 1101 | 1111 | 1110 | 1010 | 1011 | 1001 | 1000 |
00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 1 | 0 | 0 | 0 | 0 |
01 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 1 | 0 | 0 | 0 | 0 |
11 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | - | 1 | 1 | 1 | 1 | 1 |
10 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | - | 1 | 0 | 1 | 1 | 0 |
Т4 Таблица № 10 | ||||||||||||||||
Qkαm | 0000 | 0001 | 0011 | 0010 | 0110 | 0111 | 0101 | 0100 | 1100 | 1101 | 1111 | 1110 | 1010 | 1011 | 1001 | 1000 |
00 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | - | 0 | 0 | 0 | 0 | 0 |
01 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | - | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | - | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | - | 0 | 1 | 1 | 1 | 1 |
Z1 Таблица № 11 | ||||||||||||||||
Qkαm | 0000 | 0001 | 0011 | 0010 | 0110 | 0111 | 0101 | 0100 | 1100 | 1101 | 1111 | 1110 | 1010 | 1011 | 1001 | 1000 |
00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |
01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |
Z2 Таблица № 12 | ||||||||||||||||
Qkαm | 0000 | 0001 | 0011 | 0010 | 0110 | 0111 | 0101 | 0100 | 1100 | 1101 | 1111 | 1110 | 1010 | 1011 | 1001 | 1000 |
00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |
01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | - | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | - | 0 | 0 | 0 | 0 | 0 |
Z3 Таблица № 13 | ||||||||||||||||
Qkαm | 0000 | 0001 | 0011 | 0010 | 0110 | 0111 | 0101 | 0100 | 1100 | 1101 | 1111 | 1110 | 1010 | 1011 | 1001 | 1000 |
00 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | - | 0 | 1 | 1 | 1 | 1 |
01 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | - | 0 | 1 | 1 | 1 | 0 |
11 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | - | 0 | 1 | 1 | 1 | 1 |
10 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | - | 0 | 1 | 1 | 1 | 1 |
Записываем выражения для функции возбуждения и выходов.