Смекни!
smekni.com

Генетика лиственницы сибирской (стр. 5 из 6)

3.2.3 Форма кроны

Изучая формовое разнообразие лиственницы по характеру кроны в Восточной Сибири, Н.В. Дылис (1981) отмечает, что наиболее часто встречаются яйцевидно-пирамидальная и пирамидальная. А в насаждениях более старого возраста – цилиндрическая или продолговато-яйцевидная формы кроны. Л.И. Милютиным (1978) выявлена некоторая зависимость встречаемости различных форм кроны от условий произрастания. В насаждениях лиственницы в Приангарье преобладают деревья с цилиндрической (25,8-44,7%), а также с овально-яйцевидной (23,8-39,8%) формами кроны. Для крупных деревьев более характерна пирамидальная форма кроны, для оставшихся в росте деревьев – флагообразная форма.

4. Методы изменения наследственности

4.1 Мутагенез

Искусственная изменчивость при воздействии мутагенными факторами, или мутагенами, называется индуцированным мутагенезом. В отличие от естественного мутагенеза при искусственном воздействии мутагенами изменчивость увеличивается в десятки раз. Измененные организмы подвергаются отбору. Порядок и содержание мутационной селекции включает следующие этапы:

1) цель работы;

2) выбор мутагенных факторов;

3) изучение наследственной изменчивости подопытных видов и форм по влияниям мутагенов;

4) определение направления мутационной селекции;

5) производственное испытание, отбор и выбраковка мутантов.

Мутагенные факторы применительно к лесным древесным породам делят на физические и химические. К основным физическим мутагенам относятся: радиация, температурные шоки, ультрафиолетовые лучи. В мутационной селекции наиболее широко применяются ионизирующиеся излучения, которые по своей природе подразделяются на волновые и корпускулярные. К волновым излучениям относятся ультрафиолетовые лучи, рентгеновские лучи и гамма-лучи. К корпускулярным излучениям относятся частицы, протоны, нейтроны, дейтроны и др. Ионизирующие излучения при проникновении в клетку действуют непосредственно на наследственные структуры.

Наименьшей проникающей способностью обладают ультрафиолетовые лучи, рентгеновские и гамма-лучи. Проникающая способность корпускулярных излучений выше, чем у гамма - лучей более чем в 20 раз. Источниками ультрафиолетовых лучей, эффективных при облучении пыльцы, являются ртутно-кварцевые лампы, рентгеновских лучей – рентгеновские установки, гамма-лучей – радиоактивные изотопы (Са и др.), корпускулярных излучений – ядерные колонки.

Химические мутагены, насчитывающие более 400 наименований, разделяют на 5 групп:

1) Ингибиторы азотистых оснований, входящих в состав нуклеиновых кислот. Их действие заключается в подавлении синтеза гуанина и тимина. К ним относятся кофеин, теобромин, этилуретан и др.

2) Аналоги азотистых оснований, также входящие в нуклеиновые кислоты. Они включаются в ДНК на место тимина. Это кофеин, 5-бро-мурацил и др.3) Алкилирующие соединения, вызывающие нарушение точности авторепродукции молекул ДНК под воздействием этих соединений. К ним относятся: иприт, этилметансульфонат-нитрозоэтилмочевина идр.4) Окислители, восстановители и свободные радикалы, вызывающие замену в молекуле ДНК пар оснований А-Т на Г-Ц. Эта группа мутагенов объединяет азотную кислоту, перекиси, альдегиды, соли тяжелых металлов.5) Акридиновые красители, образующие в результате реакции с ДНК комплекс, препятствующий нормальной редупликации.

Химические мутагены вызывают преимущественно генные мутации, физические-генные и хромосомные. Характер мутаций изучают на основе оценки чувствительности растения к мутагену. Оказалось, что слабое воздействие мутагена стимулирует процессы жизнедеятельности растений. С усилением воздействия мутагеном стимулирующий эффект возрастает и достигает предела, затем постепенно падает и снижается до нуля. После этого он оказывает противоположное действие – начинает подавлять процессы жизнедеятельности и тем больше, чем сильное воздействие. Подавляющее воздействие мутагенов возрастает с повышением дозы воздействия до полной гибели клеток, органа или всего растения.

Различают стимулирующие, критические, летальные и оптимальные дозы мутагенов. Дозы мутагена определяются мощностью источника излучения, концентрацией и продолжительностью их воздействия на растения. Дозы, при которых всхожесть семян составляет около 50% контроля, а выживаемость 20-30% числа всходов, называются критическими. Дозы, вызывающие гибель обрабатываемого материала, называются летальными, а дозы, при которых на единицу выживаемости растения получается наибольшее количество мутаций, называются оптимальными.

Чувствительность растений к мутагенам можно оценивать по энергии прорастания семян, всхожести, выживаемости растений, степени плодовитости и стерильности, энергии роста, числу и типу хромосомных перестроек в первом митозе в клетках проростков. По чувствительности к мутагенам древесные растения делят на три группы:

1) чувствительные – кедр сибирский, лиственница, сосна обыкновенная, ели, дуб черешчатый, березы, ольха, смородина черная, шелковица (диплоидная), яблони (грушовка, белый налив) и др.;

2) среднечувствительные – рябина обыкновенная, шиповник, акация желтая, сирень, жасмин, боярышник, жимолость обыкновенная, орех черный, каштан конский, шелковица (тетраплоидная), облепиха (европейского происхождения), яблони (антоновка, пепин шафранный и др.);

3) устойчивые – липа, тополь черный, гледичия, спирея, ракитник, облепиха (алтайская) (Любавская, 1982).

4.2 Полиплоидия

Изучение некоторых разновидностей и сортов культивируемых древесных растений показало, что по своей генетической природе они являются аллополинлоидами древних гибридных видов. Между количеством хромосом и свойствами полиплоидных форм не всегда наблюдается прямая связь. Часто диплоидные особи оказываются значительно лучше полиплоидов, полученных от них. Часто диплоидные особи оказываются значительно лучше полиплоидов, полученных от них. Например, тетраплоидные формы березы, тополей, вязов, ольхи и белой акации растут медленнее диплоидных, а триплоидные особи оказались более быстрорастущими. Например, триплоидная осина характеризуется необычайно крупными листьями и исключительно быстрым ростом. Разработаны методы массового искусственного получения триплоидной осины. Опыты показали, что оллополиплоидия дает намного больше возможностей для селекции, чем аутоплиплоидия.

Фертильность определяется порядком прохождения мейоза. У тетраплоидных особей в клетках растения существуют два набора гомологичных хромосом, которые в мейозе группируются по четыре хромосомы. Четыре гомологичные хромосомы из одной группы могут расходиться к противоположным полюсам следующим образом: 2 и 2; 1 и 3; 3 и 1. Дочерние клетки в результате мейоза могут получить не полный или избыточный набор хромосом. Гаметы с несбалансированным набором хромосом, как правило, погибают. Такому стерильному дереву с нарушенным процессом образования гамет можно вернуть плодовитость (фертильность) вмешательством в процесс формирования кариотипа зародыша семян. Это имеет большое значение при отдаленной гибридизации для восстановления фертильности в последующих поколениях ценных гибридов (Любавская, 1982).

Существует правило: если диплоид фертильный, то образованный от него тетрапоид может быть стерильным; если же диплоид стерильный, то производный тетраплоид может быть фертильным. Наряду с этим замечено, что если диплоидный гибрид стерилен или образует варьирующее потомство, то при удвоении числа хромосом он может стать фертильным и хорошо размножаться, так как в этом случае все члены одного набора хромосом полностью соответствуют своим двойникам в другом наборе хромосом. Например, полученный гибрид с диплоидным набором хромосом имеет негомологичные хромосомы, вследствие скрещивания отдаленных в систематическом отношении видов. В результате хромосомы не образуют во время мейоза необходимых гомологичных пар и не распределяются равномерно по полюсам. Вместо этого они могут мигрировать к полюсам в сочетаниях: 2 и 0; 1 и 1; 0 и 1. В каждом случае яйцеклетка или пыльцевое зерно получает несбалансированные наборы хромосом и погибает. Однако, если число хромосом этого гибрида удваивается и образующаяся тетраплоидная особь имеет два полных набора хромосом (по 2п в каждом), получаются гаметы с гомологичными наборами хромосом. В мейозе хромосомы образуют нормальные пары и равномерно распределяются в дочерние клетки. Такое тетраплоидное дерево становится фертильным. Следовательно, в селекционной работе с древесными растениями полиплоидия приобретает большое значение, как метод восстановления фертильности и преодоления явления несовместимости при отдаленной межвидовой гибридизации.

Расщепление у диплоидов может сильно отличаться от расщепления у полиплоидов. Следовательно, и реакция на самоопыление у тетраплоидов и диплоидов может быть разной.

Существующие методы искусственного получения аллополиплоидов можно разделить на две группы: опыление нередуцированными гаметами и индуцирование мутагенами. При нормально протекающем мейозе хромосомное число в клетках уменьшается с 2п до 1п. Иногда редукционного деления не происходит и образуются яйцеклетки или пыльцевые зерна с 2п хромосомами. Если пыльцевое зерно с 2п хромосомами оплодотворит яйцеклетку с гаплоидным набором хромосом, образуется триплоидный эмбрион. Таким образом получают тетраплоидную осину, опыляя крупными триплоидными пыльцевыми зернами женские цветки диплоидных растений. Крупную триплоидную пыльцу отделяют от диплоидной, просеивая пыльцу через тонкую ткань (Любавская, 1982).