Смекни!
smekni.com

Расчет буквенно-цифрового дисплея (стр. 2 из 3)

.

Такое количество БИС ОЗУ обеспечивает объем памяти

СБЗУ=8к x16 бит.

Полученная избыточность определяется тем, что NЗУ в данном случае не кратно NБИС.

Определяем токовую IDL и IDH и емкостные Cd нагрузки для схем ввода информации в ОЗУ по формулам (mc = 1– число рядов матрицы , p = 2 – общее число микросхем):

Определим токи нагрузки и величину емкостной нагрузки на информационные выходы БИС ОЗУ по формулам:


Где IQУT = 20μА – ток утечки невыбранного выхода;

IОУT = 20мкА – ток утечки схем ввода информации;

CQO=10 pF – выходная емкость одного информационного выхода БИС ОЗУ.

CmQ=10 pF – монтажная емкость цепи информационного

CОQ=20 pF – выходная емкость схем ввода информации.

Полученные значения токов и емкостей нагрузки удовлетворяют соответствующим требованиям для ИС серии КР537.

Определяем токи нагрузки и емкостную нагрузку по адресным цепям БИС ОЗУ по формулам:

Для схем серии КР537 указанная нагрузка допустима.

Рассчитаем потребляемую мощность БЗУ.

Потребляемая мощность БИС КМ132РУ13А 880mW.

Поэтому потребляемая мощность ОЗУ:

РБЗУ=2∙0,880= 1760 (W).


Рисунок 2 – Принципиальная электрическая схема БЗУ

4 Выбор мультиплексора

Мультиплексор – устройство, осуществляющее коммутацию цифровых сигналов с n информационных входов на один выход. В нашем случае n =3 (необходимо коммутировать на адресную шину БЗУ содержимое счетчиков маркера или счетчиков регенерации).

В нашем случае необходимо коммутировать 12 цифровых (бинарных) сигналов.

В качестве мультиплексора применим микросхему К555КП11, содержащую в одном корпусе 4 мультиплексора из двух направлений в одно. В связи с тем, что нам необходимо коммутировать 12 цифровых сигналов, используем 3 микросхемы К555КП11.

Микросхема К555КП11 имеет следующие параметры:

–Мин. вых. напряжение высокого уровня,В 2,5

–Макс. вых. напряжение низкого уровня,мВ 480

–Макс. вх. ток высокого уровня,мкА 20

–Макс. вх. ток низкого уровня,мкА 760

–Макс. ток потребления,мА 9,7

–Напряжение источника питания,В 5

–Временная задержка распред. сигнала, нс 21

Рисунок 3 – Принципиальная электрическая схема мультиплексора

5 Расчет ПЗУ знакогенератора

Для хранения информации о графике каждого знака требуется 7 ячеек памяти с разрядностью 10.

В связи с тем, что число адресуемых ячеек памяти должно быть кратно степени 2, на каждый знак приходится 2пу ячеек памяти.

Определим число ячеек памяти ПЗУ, необходимое для размещения в нем всех знаков алфавита:

Необходимая информационная ёмкость ПЗУ:


,

где

— разрядность адресных входов, необходимая для адресации рядов матрицы знака.

,

.

В качестве ПЗУ выбираем электрически программируемую БИС КР1656РЕ3.

Справочные данные микросхемы:
Информационная ёмкость: С = 32768 бит
Организация: 4k´8
Время выборки относительно адреса tВА не более 50 нс
Напряжение питания UСС = +5 В ± 5 %
Ток потребления Iпот = 90 мА

Для полноценной работы знакогенератора достаточно одной микросхемы ПЗУ КР1656РЕ3.

Количество знаков, которое можно разместить в выбранную БИС:

.

Таким образом, выбранная БИС удовлетворяет заданию, так как

6 Выбор регистра знакогенератора

Так как разрядность сдвигового регистра должна быть не менее b’З=8, то в качестве регистра выбираем восьмиразрядный знаковый регистр К555ИР9, имеющий параллельные и последовательные входы. Параллельно данные загружаются в регистр через входы D0-D7 асинхронно, если на вход разрешения параллельной загрузки РЕ подается напряжение низкого уровня. Если на входе РЕ присутствует напряжение высокого уровня, то данные вводятся в регистр через последовательный вход S1. Сдвиг данных вправо на одну позицию происходит согласно каждому положительному перепаду тактового импульса на входе С . Вход разрешения тактовым импульсам СЕ имеет активный низкий уровень. Регистр имеет комплиментарные выходы Q7 и Q7. Микросхема К555ИР9 потребляет ток 63 мА.

Рисунок 4 – Принципиальная электрическая схема знакогенератора

7 Выбор компаратора

Компараторы кодов служат для сравнения двух многоразрядных двоичных слов. В разрабатываемом устройстве отображения информации компаратор формирует единичный сигнал при равенстве кодов с выхода счетчиков регенерации и счетчиков маркера.

Применим четырехразрядный компаратор кодов К555СП1 – микросхему средней степени интеграции. Требуется построить 12-разрядный компаратор, следовательно, будет использоваться 4 микросхемы К555СП1 (последовательный режим наращивания). Время задержки сигнала одной микросхемой – 15 нс, следовательно, составной 11-разрядный компаратор задерживает сигнал на 45 нс.:

,

где

– время задержки распространения сигнала одним компаратором;

n – количество микросхем.

Рисунок 5 – Принципиальная схема компаратора

8 Расчет блока формирования маркера

Рисунок 6. Форма маркера и дешифратор.

Составим карты Карно для нахождения функций Y1, Y2, Y3, Y4, Y5.

Y1 00 01 11 10
00 0 0 0 0
01 0 1 0 0
11 X X X X
10 0 0 0 0
Y2 00 01 11 10
00 0 0 0 0
01 1 1 0 1
11 X X X X
10 0 0 X X
Y3 00 01 11 10
00 0 0 1 0
01 1 1 1 1
11 X X X X
10 0 0 X X

Y4 00 01 11 10
00 0 0 1 1
01 1 1 1 1
11 X X X X
10 1 0 X X
Y5 00 01 11 10
00 0 1 1 0
01 1 1 1 1
11 X X X X
10 1 1 X X

Y5=Q1+ Q2+ Q3 +4

Y4= Q4 Q3+Q2 Q3 Q4

Y3=Q3 Q4+ Q1Q2Q3Q4

Y2=Q2 Q3 Q4+Q1Q2Q3Q4

Y1=Q1Q2Q3Q4

Рисунок 7 – Функциональная схема формирователя маркера

9 Расчет устройства синхронизации

Исходные даные:

Число знаков в строке Nзтс=65,5

Число текстовых строк Nтс=9,6

Матрица знака 7 х 10

Интервалы между знаками и текстовыми строками