Смекни!
smekni.com

Расчет и проектирование МДП-транзистора (стр. 3 из 5)

Qm= Qox + Qn+ QB. (1.5)

Согласно (1.5), заряд на металлическом электроде Qm уравновешивается суммой зарядов свободных электронов Qn и ионизованных акцепторов QB в полупроводнике и встроенного заряда в окисле Qox. [10].


Рисунок 1.9 - Расположение зарядов в МДП-транзисторе.

На рис. 1.9 приведена схема расположения этих зарядов. Из определения геометрической емкости окисла Сox следует, что полный заряд на металлической обкладке МДП-конденсатора Qm равен:

Qm=Cox·Vox, (1.6)

где Vox - падение напряжения на окисном слое, Сox - удельная емкость подзатворного диэлектрика.

Поскольку падение напряжения в окисле равно Vox, в полупроводнике равно поверхностному потенциалу ψs, а полное приложенное к затвору напряжение VGS, то:

VGS-Δφms= Vox + ψs= Vox + ψs0+ V(y), (1.7)

где Δφms - разность работ выхода металл - полупроводник, ψs0 - величина поверхностного потенциала в равновесных условиях, т. е. при напряжении стока VDS = 0.

Из (1.5) - (1.7) следует:

Qn=Qm- Qox-QB= Cox[VGS-Δφmss0 + V(y)] - Qox- QB (1.8)

Поскольку в области сильной инверсии при значительном изменении напряжения на затворе VGS величина поверхностного потенциала меняется слабо, будем в дальнейшем считать ее постоянной и равной потенциалу начала области сильной инверсии ψs0 = 2φ0. Поэтому будем также считать, что заряд акцепторов QB не зависит от поверхностного потенциала. Введем пороговое напряжение VТ как напряжение на затворе VGS, соответствующее открытию канала в равновесных условиях: Vt≡Vgss = 2φ0, VDS = 0).

При этом Qn(VDS = 0) = 0.

Из (1.8) следует, что [5]:

(1.9)

Тогда с учетом (6.8):

Qn=C[VGS-VT -V(y)]. (1.10)

Подставляя (1.10) в (1.4), разделяя переменные и проведя интегрирование вдоль канала при изменении y от 0 до L, а V(y) от 0 до VDS, получаем:

(1.11)

Уравнение (1.11) описывает вольт-амперную характеристику полевого транзистора в области плавного канала.


1.6 Характеристики МДП-транзистора в области отсечки

Как следует из уравнения (1.10), по мере роста напряжения исток-сток VDS в канале может наступить такой момент, когда произойдет смыкание канала, т. е. заряд электронов в канале в некоторой точке станет равным нулю. Это соответствует условию:

V(y) = Vos-VT≡V*DS (1.12)

Поскольку максимальная величина напряжения V(y) реализуется на стоке, то смыкание канала, или отсечка, первоначально произойдет у стока. Напряжение стока VDS, необходимое для смыкания канала, называется напряжением отсечки V*DS. Величина напряжения отсечки определяется соотношением (1.12). На рис. 1.10 показан канал, отсеченный у стока [5].

Рисунок 1.10 - Схема p-канального МДП-транзистора при напряжении на стоке, равном напряжению отсечки

С ростом напряжения стока VDS точка канала, соответствующая условию отсечки (1.12), сдвигается от стока к истоку. В первом приближении при этом на участке плавного канала от истока до точки отсечки падает одинаковое напряжение V*DS= VGS- VT, не зависящее от напряжения исток-сток. Эффективная длина плавного канала L от истока до точки отсечки слабо отличается от истинной длины канала L и обычно ΔL = L-L«L. Это обуславливает в области отсечки в первом приближении ток стока IDS, не зависящий от напряжения стока VDS. На рис. 1.11 показана схема p-канального МДП-транзистора при напряжении на стоке, большем напряжения отсечки. Из этого же рисунка видно, как точка отсечки смещается от стока по мере роста напряжения на стоке.

Рисунок 1.11 - Схема p-канального МДП-транзистора при напряжении на стоке, большем напряжения отсечки

Подставив значение напряжения отсечки V*DS из (1.12) в (1.11) вместо значения напряжения стока VDS, получаем для области отсечки выражение для тока стока:

(1.13)

Соотношение (1.13) представляет собой запись вольт-амперной характеристики МДП-транзистора в области отсечки. Зависимости тока стока IDS от напряжения на затворе VGS называются обычно переходными характеристиками, а зависимости тока стока IDS от напряжения на стоке VDS - проходными характеристиками транзистора. На рис. 1.12 приведены зависимости тока стока IDS от напряжения на стоке VDS для МДП-транзистора при различных напряжениях на затворе, рассчитанные по соотношениям (1.11) и (1.13) [6].

Рисунок 1.12 - Зависимость тока стока IDS от напряжения на стоке VDS для МДП ПТ при различных напряжениях на затворе. Пороговое напряжение VT = 0,1 В. Сплошная линия - расчет по (1.11) и (1.13). Пунктир - расчет по (1.17) с учетом модуляции длины канала

При значительных величинах напряжения исток-сток и относительно коротких каналах (L = 10÷20 мкм) в области отсечки наблюдается эффект модуляции длины канала. При этом точка отсечки смещается к истоку и напряжение отсечки V*DS падает на меньшую длину L′ канала. Это вызовет увеличение тока IDS канала. Величина напряжения Δ V, падающая на участке ΔL от стока отсечки, будет равна:

∆V(∆L) = VDS-V*DS =VDS-(VGS-VT). (1.14)

На рис. 1.12 этот эффект модуляции длины канала наглядно виден.

Поскольку напряжение ΔV падает на обратносмещенном p-n+-переходе, его ширина ΔL будет равна:


(1.15)

Ток канала равен IDS0, когда напряжение исток-сток VDV=V*DS = VGS -VT равно напряжению отсечки и величина ΔL = 0. Обозначим IDS ток стока при большем напряжении стока: VDS > V*DS .

Тогда:

I0DS .L = IDS-(L-∆L). (1.16)

Таким образом, ВAX МДП-транзистора с учетом модуляции длины канала примет следующий вид:

(1.17)

Эффект модуляции длины канала оказывает большое влияние на проходные характеристики МДП-транзистора с предельно малыми геометрическими размерами, поскольку в этом случае величина ΔL сравнима с длиной канала L. На рис. 1.12 пунктиром показаны зависимости тока стока от напряжения на стоке в области отсечки с учетом модуляции длины канала [10].


.

Рисунок 1.13 – Зависимости:

1 - тока стока IDS от напряжения на затворе VG в области отсеченного канала;

2 - корня из тока стока

от напряжения на затворе в области отсечки

Отметим, что эффект модуляции длины канала для полевых транзисторов по физической природе аналогичен эффекту модуляции ширины базы (эффект Эрли) для биполярных транзисторов. На вольт-амперных характеристиках транзисторов этот эффект также проявляется аналогично - в зависимости выходного тока от выходного напряжения.

Как видно из уравнения (1.13), в области отсечки ток стока IDS квадратично зависит от приложенного к затвору транзистора напряжения VG. На рис. 1.13 показана эта зависимость (кривая 1) и эта же зависимость, построенная в координатах

от напряжения VG (кривая 2). На практике экстраполяция прямолинейного участка этой зависимости определяет значение порогового напряжения [8].


1.7 Влияние типа канала на вольт-амперные характеристики МДП-транзисторов

Вид вольт-амперной характеристики МДП-транзистора в значительной мере зависит от типа полупроводниковой подложки и типа инверсионного канала. В том случае, если при нулевом напряжении на затворе VG = 0 инверсионный канал отсутствует, а по мере увеличения напряжения на затворе VG > VT появляется, такой инверсионный канал называют индуцированным. Если же при нулевом напряжении на затворе VG = 0 инверсионный канал уже сформирован, такой инверсионный канал называют встроенным. МДП-транзисторы с индуцированным каналом при нулевом напряжении на затворе всегда закрыты, а МДП-транзисторы со встроенным каналом при нулевом напряжении на затворе всегда открыты.

Зависимость тока стока IDS от напряжения на стоке VDS при различных на-пряжених на затворе VG называют проходными характеристиками МДП-транзистора, а зависимость тока стока IDS от напряжения на затворе VG при различных напряжениях на стоке VDS называют переходными характеристиками МДП-транзистора. В том случае если напряжение на стоке VDS больше, чем напряжение отсечки V*DS , на переходных характеристиках ток стока IDS от напряжения на стоке VDS не зависит.

На рис. 1.14 приведены вольт-амперные характеристики (проходные и переходные) n-канальных и p-канальных МДП-транзисторов с индуцированным и встроенным каналами. Здесь же указаны схемотехнические обозначения разных видов МДП-транзисторов. Из анализа этих вольт-амперных характеристик можно еще раз получить представление о знаках напряжений, подаваемых на затвор и сток МДП-транзисторов в активном режиме [9].