Смекни!
smekni.com

Расчет и проектирование светодиода (стр. 6 из 7)

E=F/P, лм/Вт (2.1)

Но, так как производители указывают, как правило, в качестве основного светотехнического параметра СИД силу света I, измеряемую в канделах, то нужно пересчитать канделы в люмены. Сила света определяет пространственную плотность (интенсивность) светового потока (luminous intensity):

I=F/Ω, лм/ср (2.2)

где Ω – телесный угол, измеряемый в стерадианах (ср).

2.2.2 Расчет телесного угла

Для того чтобы ознакомиться с понятием телесного угла, придется совершить краткий экскурс в стереометрию. Площадь поверхности шара радиусом R составляет 4πR2. Если выделить на поверхности шара область площадью R2, то мы получим конус с пространственным углом как раз в один стерадиан. Запомним, что полная площадь поверхности шара составляет 4π стерадиан. Полезно знать, что телесный угол Ω связан с плоским углом α соотношением:

Ω=2π(1-cosα/2), ср (2.3)

Тогда α(1ср)=65°32', α(πср)=120°, α(2πср)=180°, α(4πср)=360°. Угол α это и есть угол, приводимый изготовителями панели как угол наблюдения или угол излучения (viewing angle или radiation angle), определяемый по спаду силы света на 50%.

2.2.3 Примерный расчет эффективности

Теперь, зная приводимый изготовителями угол наблюдения, можно приблизительно определить световой поток СИД: F=IΩ.

Для примера возьмем белый светодиод NSPL500S (Nichia) с углом наблюдения α1=15°. Тогда телесный угол, рассчитанный по формуле (2.3):

Ω=2π(1-cosα/2)=2*3,14(1-cos15/2)=0.0538

Сила света этого СИД 6.4 кд. Значит световой поток, рассчитанный по (2.2) составит:

I=F/Ω, →F=I Ω= 6.4*0,0538=,0344лм.

F1=0.344 лм.

Прямое падение напряжения на СИД составляет 3.6 В при токе 20 mА. Следовательно, «закачиваемая» в СИД мощность составит:

P=U*I=3.6B*20mA=0.072Вт

а эффективность, в соответствии с (2.1) составит:

E1= F/P =0.344лм /0.072Вт=4.78 лм/Вт.

2.2.4 Уточненный расчет эффективности

Более точно телесный угол можно определить по диаграмме излучения, обычно приводимой изготовителями в полярных или декартовых координатах. Для СИД NSPL500S диаграмма выглядит так:

Рисунок 2.1 Диаграмма излучения

Когда мы рассчитываем телесный угол по углу наблюдения, то предполагаем, что излучение сосредоточено в прямоугольнике шириной 15 градусов, высотой единица и площадью S1=15 условных единиц (прямоугольник с зеленой штриховкой). Но если рассчитать площадь под кривой диаграммы направленности (сосчитать интеграл), то она составит S2=17.5 условных единиц (на графике показан равный по площади прямоугольник с красной штриховкой). Это эффективный угол наблюдения. Следовательно, для более точного расчета нужно использовать угол α2=17.5°. Тогда:

Ω=2π(1-cosα/2)=2*3,14(1-cos17,5/2)=0.0731;

I=F/Ω, →F=I Ω= 6.4.*0,0731=0,47лм;

E2= F/P =0.47лм /0.072Вт=6.5 лм/Вт.

Ω2=0.0731, F2=0.47 лм, E2=6.5 лм/вт.


2.2.5 Расчетсоставляющихэффективности

Общая эффективность светоизлучающего прибора Е определяется двумя составляющими: энергетической эффективностью прибора Ee и световой эффективностью Ev.

Первая составляющая. Энергетическая эффективность Ее - это отношение выходной оптической к входной электрической мощности. В англоязычной литературе для энергетической эффективности принято сокращение WPE (Wall-Plug-Efficiency). На рисунке показаны энергетические потери в светодиоде.

Рисунок 2.2 Схема энергетических потерь в светодиоде.

Вторая составляющая - это световая эффективность Ev. Слово «свет» предполагает наблюдателя – человека. Спектр зрения человека ограничен диапазоном длин волн от 380 до 780 нм. Вне пределов этого диапазона слово «свет» неприменимо (хотя и употребляется, например инфракрасный или ультрафиолетовый свет вместо излучение). Мало того, чувствительность зрения к различным длинам волн различна и определяется т.н. кривой видности V(λ).

Светодиод излучает не на одной длине волны, а в некотором промежутке длин волн. Интенсивность распределения оптической мощности в пределах этого промежутка описывается кривой, называемой энергетическим (или оптическим) спектром излучения Fe(λ). Оптическая мощность определяется площадью под кривой спектра и измеряется в ваттах. Для расчета световой мощности нужно перейти от энергетических величин (ватт) к световым (люменам), для чего необходимо перемножить энергетический спектр Fe(λ) на кривую видности – V(λ) (для выполнения данной операции используем приложение MicrosoftOffice – Excel ):

Рисунок 2.3 Графический расчет световой мощности

Тогда световая эффективность определится как отношение световой мощности к оптической:

Ev=Fv/Fe(2.5)

где Fe, Fv - интегралы функций Fe(λ), Fv(λ).

Максимальное значение световой эффективности приходится на длину волны 555 нм и составляет 683 лм/вт.

Теперь, зная энергетическую и световую эффективность, можно определить общую эффективность:

E=Ee*Ev(2.6)

На рисунке 2.4 показана структурные составляющие эффективности светодиода:

Рисунок 2.4 Структурные составляющие эффективности светодиода.

Вернемся к примеру со светодиодом NSPL500S. Рассчитанная вышеуказанным способом световая эффективность этого светодиода составляет 320 лм/вт. Ранее рассчитанная общая эффективность составляет E=6.5 лм/вт. Тогда энергетическая эффективность, или КПД светодиода составит Ee=0.02 (вт/вт), или 2%.

Энергетическая эффективность светодиодного кристалла составляет от 5 до 20%. Существенная доля потерь связана с потерями фотонов при выводе из корпуса светодиода. Чем шире диаграмма направленности светодиода, тем меньше эти потери. Характерные значения КПД светодиодов - от 1 до 10%. Для сравнения, КПД парового двигателя 5 - 7%.


2.2.6 Расчет инжекции не основных носителей тока

В основе работы полупроводниковых светоизлучающих диодов лежит ряд физических явлений, важнейшие из них: инжекция не основных носителей в активную область структуры электронно-дырочным гомо- или гетеропереходом; излучательная рекомбинация инжектированных носителей в активной области структуры.

Явление инжекции не основных носителей служит основным механизмом введения неравновесных носителей в активную область структуры светоизлучающих диодов (эти приборы часто называют инжекционными источниками света). Вопросы физики протекания инжекционного тока в р-n-переходах рассмотрены в работах Шокли и многих монографиях. В обобщенном виде инжекция носителей р-п-переходом может быть представлена следующим образом (рисунок 2.5).

Когда в полупроводнике создается р-n-переход, то носители в его окрестностях распределяются таким образом, чтобы выровнять уровень Ферми. В области контакта слоев p- и n-типов электроны с доноров переходят на ближайшие акцепторы и образуется дипольный слой, состоящий из ионизованных положительных доноров на n-сторон и ионизованных отрицательных акцепторов на р-стороне. Электрическое поле дипольного слоя создает потенциальный барьер, препятствующий дальнейшей диффузии электрических зарядов [5].

При подаче на р-n-переход электрического смещения в прямом направлении U потенциальный барьер понижается, вследствие чего в р-область войдет добавочное количество электронов, а в n-область - дырок. Такое диффузионное введение не основных носителей называется инжекцией.


І- зона проводимости; ІІ–запрещённая зона; ІІІ – валентная зона

Рисунок 2.5 - Энергетическая диаграмма, поясняющая механизм действия инжекционного светодиода (а); его яркостная характеристика (б) и эквивалентная схема.

Концентрация инжектированных электронов на границе р-n-перехода и р-области n'(хp) определяется выражением:


п'(Хр)=np·exp(еU/kT), (2.7)

где nр-концентрация равновесных электронов в р-области;

k-константа Больцмана;

Т-температура;

e-заряд электрона.

Концентрация инжектированных носителей зависит только от равновесной концентрации не основных носителей и приложенного напряжения.

Поскольку инжектированные носители рекомбинируют с основными носителями соответствующей области, то их концентрация п'р в зависимости от расстояния от р-n-перехода изменяется следующим образом (для электронов в р-области):

n'p=n(xp)exp[-(x-xp)/Ln], (2.8)

где Ln- Диффузионная длина электронов.

Как следует из формулы (2.8) концентрация избыточных носителей экспоненциально спадает по мере удаления от р-n-перехода и на расстоянии Ln (Lр) уменьшается в e раз, где e» 2,72 (основание натурального логарифма).

Диффузионный ток In, обусловленный рекомбинацией инжектированных электронов, описывается выражением:

In=eDnnp[exp(eU/kT)-1]/Ln (2.9)

где Dn - коэффициент диффузии электронов. Диффузионный ток дырок In описывается аналогичным выражением. В случае, когда существенны оба компонента тока (электронный и дырочный), общий ток I описывается формулой:


I = (In0 + Iр0)·[exp(eU/kT) - 1], (2.10)

где

In0 = eDn·np/Ln; Ip0=eDp*pn/Lp. (2.11)

Особенность решения вопросов инжекции при конструировании светоизлучающих диодов, в которых, как правило, одна из областей p-n-структуры оптически активна, т.е. обладает высоким внутренним квантовым выходом излучения, заключается в том, что для получения эффективной электролюминесценции вся инжекция неосновных носителей должна направляться в эту активную область, а инжекция в противоположную сторону-подавляться [4].