n–p-переход обладает удивительным свойством односторонней проводимости.
Рисунок 1 - Образование запирающего слоя при контакте полупроводников p- и n-типов.
4. Конструкция полупроводниковых диодов
Основой плоскостных и точечных диодов является кристалл полупроводника n-типа проводимости, который называется базой транзистора. База припаивается к металлической пластинке, которая называется кристаллодержателем.
Для плоскостного диода на базу накладывается материал акцепторной примеси и в вакуумной печи при высокой температуре (порядка 500 °С) происходит диффузия акцепторной примеси в базу диода, в результате чего образуется область p-типа проводимости и p-n переход большой плоскости (отсюда название). Вывод от p-области называется анодом, а вывод от n-области – катодом (рис. 2).
Рисунок 2
Большая плоскость p-n перехода плоскостных диодов позволяет им работать при больших прямых токах, но за счёт большой барьерной ёмкости они будут низкочастотными.
Точечные диоды.
Рисунок 3
К базе точечного диода подводят вольфрамовую проволоку, легированную атомами акцепторной примеси, и через неё пропускают импульсы тока силой до 1А. В точке разогрева атомы акцепторной примеси переходят в базу, образуя p-область (рис. 4).
Рисунок 4
Получается p-n переход очень малой площади. За счёт этого точечные диоды будут высокочастотными, но могут работать лишь на малых прямых токах (десятки миллиампер).
Микросплавные диоды.
Их получают путём сплавления микрокристаллов полупроводников p- и n- типа проводимости. По своему характеру микросплавные диоды будут плоскостные, а по своим параметрам – точечные.
5. Вольтамперная характеристика и основные параметры полупроводниковых диодов
Рисунок 5
Вольтамперная характеристика реального диода проходит ниже, чем у идеального p-n перехода: сказывается влияние сопротивления базы. После точки А вольтамперная характеристика будет представлять собой прямую линию, так как при напряжении Uа потенциальный барьер полностью компенсируется внешним полем. Кривая обратного тока ВАХ имеет наклон, так как за счёт возрастания обратного напряжения увеличивается генерация собственных носителей заряда.
Рисунок 6
- Максимально допустимый прямой ток Iпр.max.
- Прямое падение напряжения на диоде при максимальном прямом токе Uпр.max.
- Максимально допустимое обратное напряжение Uобр.max = (⅔ . .) ∙ Uэл.проб.
- Обратный ток при максимально допустимом обратном напряжении Iобр.max.
- Прямое и обратное статическое сопротивление диода при заданных прямом и обратном напряжениях:
- Прямое и обратное динамическое сопротивление диода:
6. Выпрямительные диоды
Общая характеристика выпрямительных диодов.
Выпрямительным диодом называется полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный в силовых цепях, то есть в источниках питания. Выпрямительные диоды всегда плоскостные, они могут быть германиевые или кремниевые. Германиевые диоды лучше кремниевых тем, что имеют меньшее прямое падение напряжения. Кремниевые диоды превосходят германиевые по диапазону рабочих температур, по максимально допустимому обратному напряжению, а также имеют меньший обратный ток.
Если выпрямленный ток больше максимально допустимого прямого тока диода, то в этом случае допускается параллельное включение диодов (рис. 7).
Рисунок 7
Добавочные сопротивления Rд величиной от единиц до десятков Ом включаются с целью выравнивания токов в каждой из ветвей.
Если напряжение в цепи превосходит максимально допустимое обратное напряжение диода, то в этом случае допускается последовательное включение диодов (рис. 8).
Рисунок 8
Шунтирующие сопротивления величиной несколько сот кОм включают для выравнивания падения напряжения на каждом из диодов.
Включение выпрямительных диодов в схемах выпрямителей.
Диоды в схемах выпрямителей включаются по одно- и двухполупериодной схемам. Если взять один диод, то ток в нагрузке будет протекать за одну половину периода, поэтому такой выпрямитель называется однополупериодным. Его недостаток – малый КПД.
Рисунок 9
Рисунок 10
Значительно чаще применяются двухполупериодные выпрямители.
Рисунок 11
Рисунок 12
В течение положительного полупериода напряжения Ua (+) диоды VD1 и VD4 открыты, а VD2 и VD3 – закрыты. Ток будет протекать по пути: верхняя ветвь (+), диод VD1, нагрузка, диод VD4, нижняя ветвь (-).
В течение отрицательного полупериода напряжения Ua диоды VD1 и VD4 закрываются, а диоды VD2 и VD3 открываются. Ток будет протекать от (+), нижняя ветвь, диод VD3, нагрузка, диод VD2, верхняя ветвь (-).
Поэтому ток через нагрузку будет протекать в одном и том же направлении за оба полупериода. Схема выпрямителя называется двухполупериодной.
Если понижающий трансформатор имеет среднюю точку, то есть вывод от середины вторичной обмотки, то двухполупериодный выпрямитель может быть выполнен на двух диодах (рис. 13).
Рисунок 13
7. Стабилитроны, варикапы, светодиоды и фотодиоды
Стабилитроны.
Стабилитроном называется полупроводниковый диод, предназначенный для стабилизации уровня постоянного напряжения. Стабилизация – поддержание какого-то уровня неизменным. По конструкции стабилитроны всегда плоскостные и кремниевые. Принцип действия стабилитрона основан на том, что на его вольтамперной характеристике имеется участок, на котором напряжение практически не зависит от величины протекающего тока.
Рисунок 14
Таким участком является участок электрического пробоя, а за счёт легирующих добавок в полупроводник ток электрического пробоя может изменяться в широком диапазоне, не переходя в тепловой пробой.
Так как участок электрического пробоя – это обратное напряжение, то стабилитрон включается обратным включением (рис. 14).
Рисунок 15
Резистор Ro задаёт ток через стабилитрон таким образом, чтобы величина тока была близка к среднему значению между Iст.min и Iст.max. Такое значение тока называется номинальным током стабилизации.
Принцип действия.
При уменьшении входного напряжения ток через стабилитрон и падение напряжения на Ro может уменьшаться, а напряжения на стабилитроне и на нагрузке останутся постоянными, исходя из вольтамперной характеристики. При увеличении входного напряжения ток через стабилитрон и URo увеличивается, а напряжение на нагрузке всё равно остаётся постоянным и равным напряжению стабилизации.
Следовательно, стабилитрон поддерживает постоянство напряжения при изменении тока через него от Iст.min до Iст.max.
Основные параметры стабилитронов:
- Напряжение стабилизации Uст.
- Минимальное, максимальное и номинальное значение тока стабилизации Iст.min, Iст.max, Iст.ном. (рис. 16).
Рисунок 16
ΔUст. – изменение напряжения стабилизации.
Дифференциальное сопротивление на участке стабилизации:
- Температурный коэффициент стабилизации
Рисунок 17
Стабилитроны, предназначенные для стабилизации малых напряжений, называются стабисторами.
Стабисторы – для стабилизации напряжения менее 3В, и у них используется прямая ветвь ВАХ (рис. 18).
Рисунок 18
Применяются стабисторы в прямом включении.