Смекни!
smekni.com

Расчет измерительных преобразователей. Полупроводниковый диод (стр. 5 из 5)

Эффект Холла

Эффект Холла проявляется в полупроводниках n-типа проводимости с протекающими через них токами и помещёнными в магнитное поле.

Рисунок 43

На движущиеся электроны в полупроводнике будет действовать сила Лоренца F, под действием которой электроны будут отклоняться к дальнему краю пластинки (рис. 43), следовательно, там будет сгущение электронов, а около переднего края – недостаток их. Поэтому между этими краями возникнет ЭДС, которая называется ЭДС Холла. Эффект Холла применяется в магнитометрических датчиках.

11. Переход Шоттки

Образование перехода Шоттки.

Переход Шоттки возникает на границе раздела металла и полупроводника n-типа, причём металл должен иметь работу выхода электрона большую, чем полупроводник.


Рисунок 44

При контакте двух материалов с разной работой выхода электронов электрон проходит из материала с меньшей работой выхода в материал с большей работой выхода, и ни при каких условиях - наоборот. Электроны из приграничного слоя полупроводника переходят в металл, а на их месте остаются некомпенсированные положительные заряды ионов донорной примеси.

В металле большое количество свободных электронов, и, следовательно, на границе металл-полупроводник возникает электрическое поле и потенциальный барьер. Возникшее поле будет тормозящим для электронов полупроводника и будет отбрасывать их от границы раздела. Граница раздела металла и полупроводника со слоем положительных зарядов ионов донорной примеси называется переходом Шоттки (открыт в 1934 году).

Прямое и обратное включение диодов Шоттки. Достоинства и недостатки.

- Если приложить внешнее напряжение плюсом на металл, а минусом на полупроводник, возникает внешнее электрическое поле, направленное навстречу полю перехода Шоттки. Это внешнее поле компенсирует поле перехода Шоттки и будет являться ускоряющим для электронов полупроводника. Электроны будут переходить из полупроводника в металл, образуя сравнительно большой прямой ток. Такое включение называется прямым.

- При подаче минуса на металл, а плюса на полупроводник возникает внешнее электрическое поле, сонаправленное с полем перехода Шоттки. Оба этих поля будут тормозящими для электронов полупроводника, и будут отбрасывать их от границы раздела. Оба этих поля будут ускоряющими для электронов металла, но они через границу раздела не пройдут, так как у металла больше работа выхода электрона. Такое включение перехода Шоттки называется обратным.

Обратный ток через переход Шоттки будет полностью отсутствовать, так как в металле не существует неосновных носителей зарядов.

12. Изготовление

В точечном диоде используется пластинка германия или кремния с электропроводностью n- типа (рис.3.1), толщиной 0,1…0,6мм и площадью 0,5…1,5 мм2; с пластинкой соприкасается заостренная проволочка (игла) с нанесенной на нее примесью. При этом из иглы в основной полупроводник диффундируют примеси, которые создают область с другим типом электропроводности. Таким образом, около иглы образуется миниатюрный р-n- переход полусферической формы.

Для изготовления германиевых точечных диодов к пластинке германия приваривают проволочку из вольфрама, покрытого индием. Индий является для германия акцептором. Полученная область германия р-типа является эмиттерной.

Для изготовления кремниевых точечных диодов используется кремний n- типа и проволочка, покрытая алюминием, который служит акцептором для кремния.

В плоскостных диодах р-n- переход образуется двумя полупроводниками с различными типами электропроводности, причем площадь перехода у различных типов диодов лежит в пределах от сотых долей квадратного миллиметра до нескольких десятков квадратных сантиметров (силовые диоды).

Плоскостные диоды изготовляются методами сплавления (вплавления) или диффузии.

В пластинку германия n- типа вплавляют при температуре около 500оС каплю индия которая, сплавляясь с германием, образует слой германия р- типа. Область с электропроводностью р- типа имеет более высокую концентрацию примеси, нежели основная пластинка, и поэтому является эмиттером. К основной пластинке германия и к индию припаивают выводные проволочки, обычно из никеля. Если за исходный материал взят германий р- типа, то в него вплавляют сурьму и тогда получается эмиттерная область n- типа.

Диффузионный метод изготовления р-n- перехода основан на том, что атомы примеси диффундируют в основной полупроводник. Для создания р- слоя используют диффузию акцепторного элемента (бора или алюминия для кремния, индия для германия) через поверхность исходного материала.

13. Достоинства и недостатки

Полупроводниковые диоды обладают многими преимуществами по сравнению с вакуумными диодами – малые размеры, длительный срок службы, механическая прочность. Существенным недостатком полупроводниковых диодов является зависимость их параметров от температуры. Кремниевые диоды, например, могут удовлетворительно работать только в диапазоне температур от –70 °C до 80 °C. У германиевых диодов диапазон рабочих температур несколько шире.

Достоинства перехода Шоттки:

- отсутствие обратного тока;

- переход Шоттки может работать на СВЧ;

- высокое быстродействие при переключении из прямого состояния в обратное и наоборот.

Недостаток диода Шоттки – стоимость. В качестве металла обычно применяют золото.

14. Перспективы развития

Ударно-ионизационный волновой пробой и генерация пикосекундных сверхширокополосных и сверхвысокочастотных импульсов в дрейфовых диодах на основе GaAs с резким восстановлением:

Впервые экспериментально подтверждено, что работа дрейфовых GaAs-диодов с резким восстановлением, изготовленных из p+-p0-n0-n+-структур, сопровождается возбуждением сверхвысокочастотных осцилляций в виде цугов коротких импульсов длительностью ~ 10 пс. Амплитуда импульсов и частота их повторения достигают значений ~ 100 В и ~ (10-100) ГГц соответственно. Факт существования явлений задержанного обратимого волнового пробоя и возбуждения сверхвысокочастотных осцилляций в структурах GaAs-диодов с резким восстановлением открывает перспективы развития новых направлений как в физике и технике полупроводниковых приборов на основе GaAs-структур, так и в новых областях техники и технологии сверхвысокочастотных и сверхширокополосных систем и устройств, оперирующих с импульсными сигналами пикосекундной длительности.


Заключение

Полученные данные позволяют расчетным путем конструировать полупроводниковые приборы по заранее заданным характеристикам. Возможно создание новых типов приборов или изменение конструкции - существующих. Например, один из дополнительных переходов можно безболезненно удалить из конструкции «туннельного» диода (любой). То же справедливо и для стабилитронов, поскольку два перехода не бывают идентичными, а близость их свойств может породить спонтанный переход стабилитрона в режим «туннелирования» на обратной ветви.

Раскрытие механизма образования паразитного диода и режима его работы позволяет решить проблему оптимизации переходов, заключающуюся в выборе технологических режимов изготовления приборов.

Рассмотренные примеры показывают, сколь ущербна сегодняшняя физика полупроводников и сколь необходима ее коренная переработка.


Список литературы

1. Тугов Н.М., Глебов Б.А. Полупроводниковые приборы — М.:Энергоатомиздат,1990г.— 576с.

2. Козлов В.А., Рожков А.В., Кардо-Сысоев А.Ф. Журнал «Физика и техника полупроводников», том 37, вып. 12 С-Пб: ФТИ, 2003г. – 140с.

3. Хлебников М.М. "Электронные приборы". Учебник для электротехнических институтов связи – М.: "Связь", 1986г. – 598с.

4. Гусев В.Г., Гусев Ю.М. Электроника – М.: Высшая школа,1991г.— 617с.