Существует несколько вариантов организации МВК, но во всех случаях в его состав входят два вида ЗУ:
- информационное (речевое)
- адресное (управляющее)
Каждый МВК состоит из двух модулей памяти информационного запоминающего устройства (ИЗУ), его объем соответствует числу каналов на входе МВК, число каналов, в свою очередь, определяется числом трактов, при условии, что каждый тракт - 32-канальная структура.
АЗУ – адресное запоминающее устройство, его объем соответствует числу каналов на выходе VDR/
Число модулей ИЗУ зависит от информационной емкости. Число микросхем в каждом модуле соответствует разрядности ячеек. Разрядность ячеек ИЗУ всегда равна 8. Разрядность ячеек АЗУ зависит от объема памяти ИЗУ.
ИЗУ и АЗУ работают в двух режимах:
ИЗУ – последовательной (циклической) записи и произвольного (ациклического) чтения ,
АЗУ произвольной (ациклической) записи и последовательного (циклического) чтения.
Работа модуля временной коммутации заключается в циклической записи всех информационных слов в порядке их поступления (т.е. в порядке следования каналов) и в считывании этих слов во временном интервале, заданном управляющей программой с помощью адресной памяти.
Для реализации МВК с заданными параметрами необходимо два модуля ИЗУ с 16 микросхемами (т.к разрядность ячеек ИЗУ -8) и один модуль АЗУ с 9 микросхемами (т.к разрядность ячеек АЗУ - 9).
Одним из основных требований к микросхемам ОЗУ, на которых строятся МВК, является время обращения к памяти, определяющее частоту работы ЗУ. Реализация процесса временной коммутации требует двух обращений к памяти в течение одного временного интервала для каждого входящего и исходящего канала. Тогда время обращения к ЗУ (длительность цикла памяти):
Определим количество каналов, обслуживаемых при заданном быстродействии ЗУ.
Вывод: При данном времени обращения к памяти, реализовать МВК невозможно.
Рис 11. Структура заданного МВК.
В процессе выполнения этой работы я произвел расчет основных параметров коммутируемой сети: разработку схем организации связи коммутационных станций, каналов; децентрализованных и централизованных систем сигнализации; модулей цифровой коммутации.
Я также закрепил навыки расчета основных параметров коммутируемой сети. Кроме того, в процессе ее выполнения я продолжил знакомство с учебной и справочной литературой по теории коммутируемой телекоммуникационной сети, закрепил навыки выполнения технических расчетов с использованием персональных ЭВМ. Также имела место - отработка навыков изложения результатов технических расчетов, составления и оформления технической документации.
1. Автоматическая коммутация под редакцией Ивановой О.Н. - М.: Радио и Связь, 1988.
2. Баркун М.А. Цифровые системы синхронной коммутации. - М.: ЭКО-ТРЕНДЗ, 2001.
3. Битнер В.И. Общеканальная система сигнализации №7. - Новосибирск, СибГУТИ, 1999.
4. Булдакова Р. А. Принципы построения цифровых коммутационных полей. Учебное пособие. - Екатеринбург: УрТИСИ - СибГУТИ, 2002.
5. Гольдштейн Б.С. Сигнализация в сетях связи. - М: Радио и связь, 1997.
6. Гольдштейн Б.С. Протоколы сетей доступа. - М.: Радио и связь, 1999.
7. Карташевский В.Г. Сети подвижной связи. -М.: ЭКО-ТРЕНДЗ, 2001.
8. Скалин Ю.В. Цифровые системы передачи. - М.: Радио и связь, 1988.
9. Телекоммуникационные системы и сети. Том l./Под ред. Шувалова В.П. Новосибирск: Сиб. Предприятие «Наука» РАМ, 1998.
10. Абилов А.В. Сети связи и системы коммутации. Учебное пособие для вузов.- Москва: Радио и связь, 2004 г.