Запорожская государственная инженерная академия
ФЭЭТ
Кафедра «Электронные системы»
Пояснительная записка к курсовому проекту
По дисциплине:
Аналоговая схемотехника
На тему:
“Расчет разностного усилителя (вычитателя) на ОУ”
Выполнила: ст. гр. ЭС-05-2д
Киричек Е.В.
Запорожье
2008
РЕФЕРАТ
Страниц-29, рисунков- 8, источников литературы-4.
В курсовом проекте рассматривается разностный усилитель. Курсовой проект состоит из двух частей. В первой части рассчитываем параметры разностного усилителя на операционных усилителях. Во второй части разрабатываем компенсационный стабилизатор напряжения.
Коэффициент усиления, операционный усилитель, повторитель напряжения, вычитатель, транзистор, компенсационный стабилизатор, источник сигнала, сопротивление, разностный усилитель.
СОДЕРЖАНИЕ
Введение
1. Операционный усилитель
1.1 Общие сведения
1.2 Структурная схема операционного усилителя
1.3 Разностный усилитель
2. Компенсационный стабилизатор
2.1 Выбор и анализ структурной схемы
3. Расчет схемы электрической принципиальной разностного усилителя
3.1 Исходные данные
4. Расчет компенсационного стабилизатора напряжения
Анализ ошибок
Заключение
Список источников
Приложение 1
Приложение 2
ВВЕДЕНИЕ
Обмен информацией в электронных системах происходит с помощью сигналов. Многие электронные устройства, используемые в быту и на производстве требуют определенных параметров напряжения на входе, отличных от параметров сети. Для создания нужного напряжения и используют стабилизаторы напряжения, один из которых требуется разработать во второй части проекта. Стабилизатор разрабатывается на базе стандартных аналоговых элементов, выпускающихся серийно и может использоваться для работы с широким спектром устройств, требующих напряжения, укладывающегося в его выходной диапазон.
Носителями сигналов могут быть разные физические величины – токи, напряжения, световые волны. Выделяют аналоговые и дискретные сигналыДискретные сигналы проще хранить и обрабатывать, они более стойкие к помехам. Поэтому дискретные сигналы чаще используют на практике, чем аналоговые, так как аналоговое преобразование сигналов является необходимым этапов обработки информации и мощности этих сигналов. Для сигналов, имеющих информационную сущность, такая последовательность преобразования с аналоговыми сигналами на входе и выходе и цифровыми на промежуточном этапе. Для сигналов, имеющих энергетическую сущность, аналоговое преобразование является единственно возможным. Поэтому, в зависимости от особенностей сигналов, существует три группы преобразований:
1) преобразования, связанные с обработкой гармонических сигналов;
2) преобразование с генерацией сигналов;
3) нелинейные “вычислительные” преобразования.
Полностью вытеснить аналоговую технику цифровая не сможет, потому что физические процессы, от которых электронная система получает информацию, имеют аналоговую природу.
1. ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ
1.1 Общие сведения
Операционный усилитель (ОУ) – унифицированный многокаскадный усилитель постоянного тока, удовлетворяющий следующим требованиям к электрическим параметрам:
коэффициент усиления по напряжению стремится к бесконечности
(
);входное сопротивление стремится к бесконечности (
);выходное сопротивление стремится к нулю (
);если входное напряжение равно нулю, то выходное напряжение также равно нулю (
);бесконечная полоса усиливаемых частот (
).История названия операционного усилителя связана с тем, что подобные усилители постоянного тока использовались в аналоговой вычислительной технике для реализации различных математических операций, например суммирования, интегрирования и др. В настоящее время эти функции хотя и не утратили своего значения, однако составляют лишь малую часть списка возможных применений ОУ.
Являясь, по существу, идеальным усилительным элементом, ОУ составляет основу всей аналоговой электроники, что стало возможным в результате достижений современной микроэлектроники, позволившей реализовать достаточно сложную структуру ОУ в интегральном исполнении на одном кристалле и наладить массовый выпуск подобных устройств. Все это позволяет рассматривать ОУ в качестве простейшего элемента электронных схем подобно диоду, транзистору и т.п. Следует отметить, что на практике ни одно из перечисленных выше требований к ОУ не может быть удовлетворено полностью.
Достоверность допущений об идеальности свойств в каждом конкретном случае подтверждается сопоставлением реальных параметров ОУ и требований к разрабатываемым электронным средствам (ЭС).
Параметры ОУ можно разделить на следующие группы.
Входные параметры, определяемые свойствами входного дифференциального каскада:
· напряжение смещения нуля Uсм , значение которого определяется неидентичностью напряжений Uбэ0 транзисторов входного дифференциального каскада, и его температурный дрейф ΔUсмΔT;
· входной ток инверирующего I-вх и неинвертирующего входа I+вх , а также средний Iвх.ср и разностный Iвх.разн входной ток (ток баз транзисторов в режиме покоя входного дифференциального каскада) и температурный дрейф разностного входного тока ΔIвх.разн /ΔT;
· максимальное входное дифференциальное Uвх.диф. мах и синфазное Uвх.сс. мах напряжения;
· входное дифференциальное сопротивление Rвх.оу , т.е. сопротивление между входами ОУ для малого дифференциального входного сигнала, при котором сохраняется линейность выходного напряжения;
· входное синфазное сопротивление Rвх.сф. , т.е. сопротивление, равное отношению напряжения, поданного на оба входа ОУ, к току входов.
Передаточные параметры:
· коэффициент усиления по напряжению Коу определяемый отношением изменения выходного напряжения к вызвавшему это изменение дифференциальному входному сигналу Коу= Uвых/Uвх.диф ;
· коэффициент ослабления синфазного сигнала Косс определяемый отношением коэффициента усиления дифференциального сигнала в схеме на ОУ к коэффициенту усиления синфазного сигнала Косс= Коу/ Коу.сс . Он характеризует способность ослаблять (не усиливать) сигналы, приложенные к обоим входам одновременно;
· граничная частота fгр – частота на которой коэффициент усиления уменьшается в (1/2)1/2 раз по отношению к максимальному значению коэффициенту усиления. Эта частота соответствует уменьшению коэффициента усиления на –3дБ, при задании коэффициента усиления в логарифмическом масштабе. Для ОУ АЧХ коэффициента усиления которого приведена на рис.1 граничная частота fгр=10Гц;
· частота единичного усилия f1 т. е. частота, при которой Коу=1. Для ОУ АЧХ коэффициента усиления которого приведена на рис.1 частота единичного усиления f1=106Гц. Граничная частота fгр , частота единичного усиления f1 и коэффициент усиления по напряжению Коу для ОУ с внутренней коррекцией связаны соотношением f1= fгрКоу .
· запас устойчивости по фазе на частоте единичного усиления φзап , характеризует устойчивость ОУ. φзап =1800 – |φ1|, где φ1 – фазовый сдвиг на частоте f1. Положительный запас устойчивости по фазе является показателем устойчивости ОУ. Для получения максимально быстрого отклика на импульсный входной сигнал и одновременно исключения звона или неустойчивости желательно иметь запас устойчивости по фазе порядка 450. Для ОУ фазово-частотная характеристика, которого приведена на рис.1 φ1=900, а φзап=900.
Выходные параметры, определяемые свойствами выходного каскада ОУ:
· выходное сопротивление Rвых ;
· максимальный выходной ток Iвых.мах , измеряемый при максимальном выходном напряжении, или минимальное сопротивление нагрузки Rн.мин ;
· максимальное выходное напряжение в диапазоне линейного усиления. Для большинства типов ОУ величина Uвых.мах=( Еп– 1,5)В, что составляет примерно - 10 В.
Переходные параметры:
· скорость нарастания выходного напряжения Vu.вых- максимальная скорость изменения во времени напряжения на выходе ОУ (В/мкс) при подаче на вход большого сигнала;
· время установления выходного напряжения tуст время за которое выходное напряжение достигает свое стационарное значение с заданной точностью.
· напряжение питания ± Еп ;
· потребляемый ток Iпот .
· потребляемая мощность. Мощность (без нагрузки) потребляемая операционным усилителем.
Важной характеристикой ОУ является его амплитудная (передаточная) характеристика. Она приведена на рис.3 – Uвых =f (Uвх+ , Uвх-). Кривая 1 соответствует выходному напряжению при входном напряжении на инвертирующем входе и нулевом напряжении на неинвертирующем входе, т.е. Uвых=f(Uвх-)|Uвх+= 0 . Кривая 2 – Uвых= f(Uвх+)|Uвх-= 0 . По амплитудной характеристике можно определить Коу=Uвых/Uвх , и Uсм – напряжение смещения – это постоянное напряжение на входе при котором выходное напряжение равно нулю, т.е. ОУ - сбалансирован, Uсдв – напряжение сдвига - это постоянное напряжение на входе, когда Uвх- = Uвх+ = 0. Типовые значения: Коу=104¸107 ; Uсм = 5...20 мВ.