Министерство образования Российской Федерации
Чувашский государственный университет им. И.Н. Ульянова
Кафедра «Системы автоматизированного управления электроприводами»
Курсовой проект
по дисциплине
“Автоматизированный электропривод промышленных установок и технологических комплексов”
На тему: Расчет характеристик электропривода насоса Д5000-32-2 для 2-х способов регулирования производительности.
Проверил:
профессор, к.т.н.
Ларионов Владимир Николаевич
Чебоксары, 2005
Содержание
1. Введение
2. Построение характеристик насоса для скоростей, отличных от номинальной и характеристики магистрали
3. Расчет и выбор электродвигателя и асинхронно-вентильного каскада
4. Расчет и построение механических характеристик .
5. Расчет потерь скольжения, потерь в асинхронно-вентильном каскаде и потерь в роторе
6. Расчет мощности, потребляемой из сети приводом при регулировании задвижкой и с помощью асинхронно-вентильного каскада .
7. Список использованной литературы
1. Введение
Современное промышленное и сельскохозяйственное производство, транспорт, коммунальное хозяйство, сферы жизнеобеспечения и быта связанны с использованием разнообразных технологических процессов, большинство из которых основано на применении рабочих машин и механизмов, разнообразие и число которых огромно. Там, где применяются технологические машины – используется электропривод. Практически все процессы, связанные с движением с использованием механической энергии, осуществляются электроприводам. Исключение составляют лишь некоторые транспортные и сельскохозяйственные машины (автомобили, тракторы и др.), но и в этой области перспективы использования электропривода стали вполне реальны.
Электропривод – главный потребитель электрической энергии. В развитых странах на долю электропривода приходится свыше 60% всей вырабатываемой электроэнергии.
Электроприводы различны по своим техническим характеристикам: по мощности, скорости вращения, конструктивному исполнению и другим. Мощность электроприводов прокатных станов, компрессоров газоперекачивающих станций и ряда других уникальных машин доходит до нескольких тысяч киловатт. Мощность электроприводов, используемых в различных приборах и устройствах автоматики, составляет несколько ватт. Диапазон мощности электроприводов очень широк. Также велик диапазон электроприводов по скорости вращения.
Большинство производственных рабочих машин и механизмов приводится в движение электрическими двигателями. Двигатель вместе с механическими устройствами (редукторы, трансмиссии, кривошипно-шатунные механизмы и др.), служащими для передачи движения рабочему органу машины, а также с устройствами управления и контроля образует электромеханическую систему, которая является энергетической, кинематической и кибернетической (в смысле управления) основой функционирования рабочих машин.
В более сложных технологических машинных комплексах (прокатные станы, экскаваторы, обрабатывающие центры и другие), где имеется несколько рабочих органов или технологически сопряженных рабочих машин, используется несколько электромеханических систем (электроприводов), которые в сочетании с электрическими системами распределения электроэнергии и общей системой управления образуют электромеханический комплекс.
Большие скорости обработки, высокая и стабильная точность выполнения технологических операций потребовали создания высокодинамичных электроприводов с автоматическим управлением. Стремление снизить материальные и энергетические затраты на выполнение технологических процессов обусловило необходимость технологической и энергетической оптимизации процессов; эта задача также легла на электропривод. На этапе технического развития машинного производства, достигнутого к концу XX века, электромеханические комплексы и системы стали определять технологические возможности и технический уровень рабочих машин, механизмов и технологических установок.
Создание современных электроприводов базируется на использовании новейших достижений силовой электротехники, механики, автоматики, микроэлектроники и компьютерной техники. Это быстро развивающиеся области науки, что определяет высокую динамичность развития электромеханических систем.
В последние годы с появлением доступных технических средств для регулирования скорости асинхронных двигателей для привода насосов в системах тепло- и водоснабжения стали применятся регулируемые электроприводы.
Электропривод насоса выполняет две функции: преобразует электрическую энергию в механическую, необходимую для подачи воды потребителю, и управляет работой установки таким образом, чтобы поддерживать требуемую величину напора и расхода воды.
Автоматизированный электропривод получил в последние десятилетия интенсивное ускоренное развитие. Это определяется, в первую очередь, общим прогрессом машиностроения, направленным на интенсификацию производственных процессов, их автоматизацию, повышение точностных характеристик и других технических требований, связанных с обеспечением стабильности качества производимой продукции.
Вторым обстоятельством, обусловившим развитие электропривода, явилось распространение его применения не только на промышленное производство, но и на другие сферы, определяющие жизнедеятельность человека: сельское хозяйство, транспорт, медицину, электробытовые установки и др.
Третья причина связана с наметившимся переходом от экстенсивного развития производства электрической энергии к более эффективному ее использованию. Повышение эффективности электромеханического использования электроэнергии всецело зависит от совершенствования электропривода.
2. Построение характеристик насоса для скоростей, отличных от номинальной и характеристики магистрали
Исходные данные:
(η,4*%)Рис. 2.1 Характеристика насоса Д5000-32-2; n=585об/мин.
Производительность и напор находятся по формулам:
, . (2.1)Номинальные значения производительности
и напора соответствуют значениям на характеристике насоса для номинальной скорости.Рассчитаем характеристику насоса для различных скоростей по формулам 2.1. Результаты занесем в таблицу 2.1.
Далее рассчитаем характеристику магистрали по двум точкам. По заданию известно, что статический напор
м. Также известно, что при м3/ч напор м. Известно, что: (2.2)Определим
. Из формулы (2.2) имеем: ,Получим:
.Тогда зависимость
для магистрали выражается формулой: (2.3)Используя формулу (2.3) рассчитаем несколько точек магистрали. Результаты занесем в таблицу 2.2.
Таблица 2.1.
Точка | 1 | 2 | 3 | |
Q,м3/ч | 900 | 3000 | 4800 | |
Н, м | 20 | 17 | 12 | |
Q,м3/ч | 630 | 2100 | 3360 | |
Н, м | 9,8 | 8,33 | 5,88 | |
Q,м3/ч | 720 | 2400 | 3840 | |
Н, м | 12,8 | 10,88 | 7,68 | |
Q,м3/ч | 810 | 2700 | 4320 | |
Н, м | 16,2 | 13,77 | 9,72 |
Таблица 2.2.
Q,м3/ч | 0 | 500 | 1000 | 1500 | 2000 | 2500 | 3000 |
Н, м | 8 | 8.495 | 9.98 | 12.455 | 15.92 | 20.375 | 25.82 |
По точкам из таблиц 2.1 и 2.2 построим семейство характеристик насоса для скоростей от ωН до 0,7ωН и характеристику магистрали (рис.2.2).
Рис. 2.2 Характеристики насоса для скоростей отличных от номинальной и характеристика магистрали.
3. Расчет и выбор электродвигателя и преобразователя частоты
Мощность насоса в кВт в рабочей точке определяется по формуле:
, (3.1)где НН[м], QH[м3/ч] и ηН- значения напора, производительности и КПД, соответствующие точке пересечения характеристики насоса и магистрали;