Смекни!
smekni.com

Расчет, анализ и оптимизация режимов и потерь электроэнергии в предприятии "КАТЭКэлектросеть" (стр. 8 из 18)

По окончании расчета установившегося режима можно приступать к его оптимизации.

2.3 Общая характеристика и математическая постановка задачи оптимизации электрических режимов

При передаче электрической энергии от шин электростанций до потребителей часть электроэнергии неизбежно расходуется на нагрев проводников, создание электромагнитных полей и прочие эффекты. При анализе потерь электроэнергии принято различать следующие виды потерь:

- отчетная величина потерь электроэнергии в энергосистеме – определяемая как разность между количеством электроэнергии, отпущенной в сеть собственными электростанциями, электростанциями других ведомств и соседними энергопредприятиями, и реализованной электроэнергией, вычисленной по сумме оплаченных счетов от потребителей;

- расчетная или техническая величина потерь, определяемая по известным параметрам режимов работы и параметрам элементов сети, она обусловлена расходом электроэнергии на нагрев проводников и создание электромагнитных полей;

- коммерческие потери – определяемые как разность между отчетными и техническими потерями, они обусловлены несовершенством системы учета, неодновременностью и неточностью снятия показаний счетчиков, погрешностью используемых приборов учета, неравномерностью оплаты электропотребления, наличием безучетных потребителей, хищениями и т. д.

Оптимизация режимов работы ВЭС в данной работе будет нацелена на снижение именно технической величины потерь электроэнергии.

Оптимизация режима по напряжению, реактивной мощности и коэффициентам трансформации является частью комплексной задачи оптимизации режима "по всем переменным", т. е. задачи экономического распределения активных и реактивных мощностей с учетом ограничений по надежности и качеству энергии. Однако влияние основных переменных – активных мощностей электростанций – на распределение реактивных мощностей весьма значительно, а обратное влияние относительно невелико. Этим оправдывается практическое решение задачи оптимизации режима по напряжению, реактивной мощности и коэффициентам трансформации как задачи "дооптимизации" режима при заданном распределении активных мощностей.

Практически решение задачи оптимизации режима энергосистем по напряжению и реактивной мощности сводится к следующему. Для центров питания с возможностью независимого регулирования напряжения (в пределах, ограниченных располагаемыми техническими средствами) устанавливаются графики желательных и предельно допустимых уровней напряжения (таблица 1.2), и эти центры служат контрольными точками по режиму напряжения. Кроме того, выбираются контрольные точки по напряжению в узлах основной сети, поддержанием заданного графика в которых обеспечиваются требуемые уровни напряжения в центрах питания, не имеющих собственных (местных) средств регулирования напряжения.

Отметим, что полученное значение потерь электроэнергии после реализации всех рекомендаций в общем случае будет отличаться на величину коммерческих потерь и некоторого значения (не обязательно положительного), обусловленного не учетом влияния погодных условий.


Таблица 2.1 – Графики желательных и предельно допустимых напряжений в киловольтах

Режим Класс напряжения, кВ
1 6
10
35
110
220
500
2, 3, 4 6
10
35
110
220
500

Поясним на примере обозначенную выше взаимосвязь между потерями мощности и значениями напряжения в узлах, реактивной мощности источников и коэффициентов трансформации. Рассмотрим фрагмент сети, схема замещения которого в общем случае содержит следующие комплексные параметры (рис. 2): продольное сопротивление

(проводимость
) с нагрузочными потерями при протекании тока нагрузки
по линиям и трансформаторам и поперечную проводимость (шунт проводимости)
, отражающую преимущественно потери холостого хода трансформаторов, компенсирующих устройств и линий. В схеме замещения учтен идеальный трансформатор с действительным оэффициентом трансформации
(
), поскольку в данных сетях производится только продольное регулирование напряжения и перераспределение реактивной мощности. Комплексные значения напряжения в начале участка
и в его конце
, различается падением напряжения
и объединенные трансформацией в виде

,

определяются из расчетов исходного и оптимального режимов. В электрических сетях 35-110 кВ потери напряжения в основном определяются продольной составляющей падения напряжения

,

величина которой, а следовательно и значения напряжений в узлах в силу соотношения

преимущественно определяется потоками реактивной мощности.

Рисунок 2 – Общий фрагмент схемы замещения электрической сети


Взаимосвязь параметров данной оптимизационной задачи можно представить с помощью известных формул. Потери активной мощности

,
,

зависят от величины тока в продольной части схемы замещения (рис. 2)

,

и в ее поперечной части

.

Анализируемые потери мощности выразим через модули напряжений и потери напряжения: в продольной части схемы замещения в виде

,

или иначе

,

а также в виде

;

в поперечной части

,
.

Отметим также зависимость потоков активной и реактивной мощностей

,

,

и зарядной (емкостной) мощности шунтов

,
,