Смекни!
smekni.com

Расчёт переходных процессов в линейных электрических цепях с сосредоточенными параметрами (стр. 3 из 4)

=

=

Подставим значение

, i3(+0), и найдём коэффициенты А1 и А2 для времени t+0

-1.314=-1.798+A1+A2

433.96=592/806-406A1-234A2

A1=-1.314+1.798-A2=0.484- A2

433.96=592.806-406(-0.484- A2)-234 A2

433.96-592.806+406 .0.484= A2(406-234)

37.658=172A2A2=0.219

A1=0.265

Ток i3 будет равняться

I3=2.607sin(314t-43.600)+0.265е-406t+0.219е-234t (A)

Таблица переменных

Время t, c 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.0063
Ток i2, A 1.115 1.327 1.528 1.671 1.7428 1.7430 1.6745 1.6413

3 этап курсовой работы

Найдём выражение для тока катушки операторным методом:

R
1 R2


Запишем начальные условия в момент времени t(-0)

I3(-0)=
=
= 5.263 (A)

Uc(-0)=0 (В)

Нарисуем схему замещения цепи для расчёта тока катушки операторным методом.

В ветви с реактивными элементами добавим ЭДС, так как у нас не нулевые начальные условия. Причём в ветвь катушки по на правлению тока, а в ветвь конденсатора против тока.


Определим операторное изображение тока катушки. Для этого составим систему уравнений по законам Кирхгофа, направление ЭДС катушки указанo на схеме.

I1(p)-I2(p)-IC(p)=0 (1.3)

(2.3)

(3.3)

Из уравнения (2.3) выразим ток I1(p) и подставим в уравнение (3.3):


Из уравнения (3.3)

(2.3.1)

(2.3.2)

Подставим численные значения элементов

По полученному изображению найдём оригинал тока .

Операторное решение тока имеет вид правильной дроби I=

. Оригинал тока найдём при помощи теоремы разложения.

Определим корни знамена теля, для этого приняв его равным нулю.

p1=0

0,000065p2+0,1065p+36=0

Д=(0б1065)2-4.0,000065.36=0,0019

I2(p)=

Найдём A1 A2 A3

Коэффициент An будем искать в виде,

где N(p) – числитель, а M(p) – знаменатель

A1=

A2=

A3=

Таким образом, i2(t) будет равняться

i2(t)=A1.exp(p1t)+ A2.exp(p2t)+ A3.exp(p3t)=1,944-0,71e-477t+0,3e-1162t

Искомый ток катушки i2 равняется :

i2=1,944-0,71e-477t+0,3e-1162t (A)

Токи сходятся.


4 этап курсовой работы

Начертим схему для расчёта цепи интегралом Дюамеля и рассчитаем её


Определим переходную характеристику h1(t) цепи по напряжению UR2. Для этого рассчитаем схему при подключении цепи в начальный момент t=0 к источнику единичного напряжения. Рассчитаем схему классическим методом. Так как нулевые начальные условия UC(-0)=UC(+0)=0, это значит дополнительных ЕДС не будет.

Напишем уравнения по законам Кирхгофа для цепи:

i1-i2-ic=0

i1.R1+ i2.R2=U iс=

iс.R3-i2.R1+Uc=0 i1=i2+iс

i1=i2+iс

i2(R1+R2)+iсR1=U i2=

iс.R3-i2.R1+Uc=0

iс.R3+Uc-

+

ic

+

+

+

0,00043l+1=0 l=-2322,58 (
)

UC св=Ae-2322,58t

UC вын=

(B)

UC=UC св+UC вын=0,278+Ae-2322,58t A=-0,278

UC=0,278-0,278e-2322,58t (B)