МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
ИНСТИТУТ ЭЛЕКТРОЭНЕРГЕТИКИ
по курсу «Электроника и микросхемотехника»
на тему «Расчёт усилителя мощности типа ПП2»
СОДЕРЖАНИЕ.
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
ОПРЕДЕЛЕНИЕ НАПРЯЖЕНИЯ ИСТОЧНИКА ПИТАНИЯ
РАСЧЁТ КОЛЛЕКТОРНОЙ ЦЕПИ ТРАНЗИСТОРОВ (VT7, VT8)
ОКОНЧАТЕЛЬНЫХ ТРАНЗИСТОРОВ
РАСЧЁТ ЦЕПЕЙ ТРАНЗИСТОРОВ VT5 и VT6
РАСЧЁТ ПАРАМЕТРОВ ЦЕПЕЙ СМЕЩЕНИЯ
РАСЧЁТ ПАРАМЕТРОВ ДЛЯ ВЫБОРА ТРАНЗИСТОРА VT3
РАСЧЁТ ПАРАМЕТРОВ ДЛЯ ВЫБОРА ТРАНЗИСТОРА VT4
РАСЧЁТ ПАРАМЕТРОВ ЦЕПИ ОБРАТНОЙ СВЯЗИ
РАСЧЁТ ПАРАМЕТРОВ ДЕФФЕРЕНЦИАЛЬНОЙ СХЕМЫ
ОПРЕДЕЛЕНИЕ ЕМКОСТИ КОНДЕНСАТОРОВ
1ПЕЧАТНАЯ ПЛАТА УСИЛИТЕЛЯ МОЩНОСТИ ТИПА ПП2
ПЕРЕЧЕНЬ ЕЛЕМЕНТОВ
СПИСОК ЛИТЕРАТУРЫ
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Устройство биполярного транзистора
Биполярным транзистором называется электронный прибор с двумя взаимодействующими p-n -переходами и тремя или более выводами. P-n-переходы образуются тремя близко расположенными областями с чередующимися типами электропроводности: p-n-p или n-p-n . Такие транзисторы называют биполярными, так как их работа основана на использовании в качестве носителей заряда как электронов, так и дырок. Примерный вид структуры и обозначения на схемах биполярных транзисторов представлены на рис.3.1,а. Жирной чертой показаны невыпрямляющие контакты выводов; на рис.3.1,б даны обозначения n-p-n транзистора и p-n-p транзистора.
Рис. 3.1
Большинство биполярных транзисторов изготавливается на основе кремния. Чаще используется структура n-p-n , так как в этом случае основными носителями являются электроны, а они более подвижны чем дырки. Ниже будут рассматриваться в основном биполярные транзисторы типа n-p-n, однако выводы в основном справедливы и для биполярных транзисторов типа p-n-р , с той лишь разницей, что прямое и обратное напряжение у них имеют противоположный знак по сравнению с n-p-n .
Несмотря на кажущуюся симметрию структуры биполярного транзистора по отношению к базе, p - n -переходы его несимметричны. Область эмиттера имеет более высокую концентрацию основных носителей по сравнению с коллектором. Часто область эмиттера обозначают с плюсом: n+ - эмиттер, n – коллектор, подчеркивая тем самым более высокую концентрацию электронов в эмиттере. Эмиттер выполняет роль поставщика основных носителей заряда к коллектору. Из-за большой концентрации электронов эмиттер имеет высокую проводимость (или малое объемное сопротивление). База является более высокоомной областью по сравнению с эмиттером. Основных носителей в ней – дырок – здесь мало. Однако дырки являются неосновными носителями в областях эмиттера и коллектора.
К эмиттерно-базовому переходу обычно прикладывается относительно небольшое прямое напряжение. Поэтому мощность, рассеиваемая в области эмиттера, сравнительно невелика, коллекторный переход находится обычно под достаточно большим обратным напряжением, что приводит к большой мощности, рассеиваемой в нем. Поэтому этот коллекторный переход имеет гораздо большую площадь по сравнению с эмиттером. По конструкции и технологии изготовления различают биполярные транзисторы сплавные, эпитаксиально-диффузионные, планарные.
Рабочей областью транзистора является так называемая активная область кристалла, расположенная непосредственно под эмиттерным переходом. Необходимое взаимодействие между переходами обеспечивается малой толщиной базы, которая у современных транзисторов меньше диффузионной длины L и не превышает нескольких микрометров. При этом ток одного перехода сильно влияет на ток другого, и наоборот. База транзистора может быть легирована неравномерно и равномерно по своему объему. В базе с неравномерным распределением атомов примеси (неоднородная база) образуется внутреннее электрическое поле, приводящее к дрейфу носителей заряда и ускорению движения носителей через базу. В однородной базе движение носителей связано только с диффузией. Поэтому первый тип транзисторов называют дрейфовыми, а второй – бездрейфовыми. Дрейфовые транзисторы более быстродействующие.
В зависимости от сочетания знаков и значений напряжений на p-n-переходах транзистора различают следующие режимы его работы:
а) активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный переход – обратное;
б) режим отсечки – на оба перехода поданы обратные напряжения (транзистор заперт);
в) режим насыщения – на оба перехода поданы прямые напряжения (транзистор полностью открыт);
г) инверсный активный режим – напряжение на эмиттерном переходе обратное, на коллекторном – прямое.
Режимы отсечки и насыщения характерны для работы транзистора в качестве электронного ключа; активный режим используют при работе транзистора в усилителях. Инверсное включение используется редко, например, в схемах двунаправленных переключателей, при этом транзисторы должны иметь симметричные свойства в обоих направлениях. В режиме отсечки оба перехода заперты, через них проходят незначительные обратные токи, что эквивалентно большому сопротивлению переходов. В первом приближении можно считать, что все токи равны нулю, а между выводами транзистора имеет место разрыв (см.рис.3.2,а).
Рис. 3.2В режиме насыщения через оба перехода проходит большой прямой ток. В первом приближении можно считать все выводы закороченными. Говорят, что транзистор «стягивается в точку».
Более сложная картина токов в транзисторе наблюдается при разных полярностях напряжений на переходах, т.е. в активном режиме. Рис. 3.3 иллюстрирует принцип работы транзистора в активном режиме.
Здесь показаны области p - n -переходов и потоки электронов и дырок в результате взаимодействия переходов в активном режиме.
Рис. 3.3
Через смещенный в прямом направлении эмиттерный переход проходит достаточно большой прямой ток, обусловленный движением основных носителей заряда (в данном случае – электронов). Электроны пролетают через p-n-переход и инжектируются (впрыскиваются) в область базы; при этом дырки из области базы проходят через переход в эмиттер (для них p-n-переход также смещен в прямом направлении). Но поскольку эмиттер имеет большую концентрацию примесей, то поток электронов из эмиттера в базу намного сильнее потока дырок из базы в эмиттер. Именно электронный поток и является главным действующим лицом в транзисторе типа n -p-n (аналогично дырки – в транзисторе типа p-n-р).
Из-за диффузии и дрейфа (в дрейфовых транзисторах) электроны движутся в сторону коллекторного перехода, стремясь равномерно распределиться в толще базы. Так как база имеет очень малую толщину и малое число дырок, большинство разогнавшихся еще в эмиттере электронов не успевает рекомбинировать в базе, они достигают коллекторного p-n-перехода, где для них, как для неосновных носителей в области базы, обратное напряжение перехода не является барьером, и уже в коллекторе электроны попадают под притягивающее действие приложенного внешнего напряжения, образуя во внешней цепи коллекторный ток IК . В результате рекомбинации части электронов с дырками базы образуется ток базы IБ, направленный в противоположную от коллектора сторону, и коллекторный ток оказывается несколько меньше эмиттерного. Через коллектор также течет обратный ток неосновных носителей – дырок, вызванный обратным смещением коллекторного перехода.
Биполярный транзистор, как управляемый прибор с тремя выводами, может быть описан двумя семействами вольтамперных характеристик (ВАХ): семейством входных ВАХ и семейством выходных ВАХ. Вид их определяется способом включения в схему транзистора, а именно: какой из трех выводов является общим с источниками питания и нагрузки.
Входными ВАХ транзистора являются зависимости входного тока транзистора от входного напряжения при заданном постоянном напряжении на выходе:
выходными ВАХ являются зависимости выходного тока от выходного напряжения при заданном постоянном входном токе (или, реже, напряжении):
.Возможны три схемы включения (по числу выводов) биполярного транзистора: с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором (ОК). На рис.3.4. представлены эти схемы включения транзистора вместе с полярностью источников питания, причем указанная полярность обеспечивает активный режим. Напряжения обычно отсчитываются относительно общего вывода транзистора.
Рис. 3.4.
В справочниках обычно даются семейства ВАХ транзисторов, включенных по схеме ОБ или ОЭ. Однако основные необходимые параметры транзистора можно рассчитать для остальных схем включения, зная их для какой-либо одной.
Отметим, что включение транзистора, например, отличным от ОБ способом, не отражает никаких новых физических эффектов в транзисторе. Кроме того, при расчетах схем с транзисторами на компьютерах с помощью моделирующих программ чаще всего вообще никак не учитывается способ включения. Программы используют математические модели транзистора, являющиеся едиными для всех схем включения. Однако, анализ характеристик и параметров различных схем включения часто облегчает понимание принципа работы схемы и получение некоторых предварительных результатов.