Смекни!
smekni.com

Резисторы (стр. 4 из 6)

г) основные технологические и конструктивные ограничения. Сопротивление резистора R — Rsl/b, где l и b — длина и ширина резистора.

Проектирование резистора с заданным номиналом сводится к определению конфигурации резистивного слоя, так как при известном поверхностном сопротивлении слоя Rsноминальное значение сопротивления резистора зависит от отношения его длины к ширине (коэффициента формы Кф = l/b). Контактные площадки, расположенные на концах полупроводникового резистора, вносят дополнительные сопротивления. Поэтому в расчетную формулу вводится поправочный коэффициент, зависящий от конфигурации контактных областей. На рис. 8. приведены несколько типовых топологий полупроводниковых резисторов. Конфигурации, приведенные на рис. 8, а, б, пригодны для реализации низкоомных резисторов с номинальными значениями от нескольких ом до одного килоома. При этом оказывается, что для очень низкоомных резисторов ширина превышает его длину.

R = Rs(l/b + 2k1),(1)

R = Rs((li + k)/b-b3k1)

где k1 = 0,07 — поправочный коэффициент.

Для резисторов с номинальными значениями, превышающими 400 Ом, можно использовать топологию, приведенную на рис. 8, в. Расчетное соотношение для определения сопротивления резистора в этом случае

R = Rs(l/b + 2k2),(2)

где k2 = 0,65 – поправочный коэффициент.

Резисторам с номинальными значениями более 1 кОм целесообразно придавать форму змейки (рис. 8, г), что позволяет значительно уменьшить площадь, занимаемую резистором. Изгибы резистора оказывают влияние на его значение, что учитывается используемым для этого случая расчетным соотношением

R = Rs(l/b + 2·0,65 + n0,55),(3)

где l – суммарная длина прямоугольных участков; п – число изгибов резистора на угол 90 °.

Рис.8. Топологии диффузионных резисторов: а, б – низкоомные до 1 кОм; в, г – свыше 400 Ом.

Расчет геометрических размеров интегральных полупроводниковых резисторов начинают с определения их ширины. За ширину резистора принимают значений, которое не меньше наибольшего значения одной из следующих величин:

минимальной ширины резистора bтех, определяемой разрешающей способностью технологических процессов (bтех = 3,5 – 4 мкм);

минимальной ширины резистора bточн, при которой точность его изготовления равна заданной;

минимальной ширины резистора bРопределяемой исходя из максимально допустимой рассеиваемой мощности:

bрас ≥ макс (bтех, bточн, bР).(4)

Ширина резистора

где Δb, Δl– абсолютные погрешности ширины и длины резистивной полоски (для типовых технологических процессов Δb = Δl = 0,05 – 0,1 мкм); Кф –коэффициент формы, определяется из соотношения Kф = R/Rs; γкФ – относительная погрешность коэф­фициента формы резистора:

γкФ = γR–γRS– γT(5)

Здесь γRS=ΔRs/Rs– относительная погрешность удельного поверхностного сопротивления легированного слоя (для типовых технологических процессов γRS= 0,05 – 0,1); γT= αRмакс = = 20°С) – температурная погрешность сопротивления.

Минимальное значение ширины bРопределяется как’

(6)

где Pо – максимально допустимая удельная мощность рассеяния, выбираемая в зависимости от типа корпуса микросхемы и условий ее эксплуатации в пределах 0,5 – 4,5 Вт/мм.

Расчетную длину резистора определяют исходя из формулы (1).

Для составления топологического чертежа определяют вначале промежуточные значения ширины и длины резистора, учитывающие технологические отклонения размеров:

bпром = bрасч – 2Δтрав – αxj(7)

bпром = lрасч – 2Δтрав – αxj(8)

где Δтрав – погрешность, вносимая за счет систематического растравления контактных окон в окисле (для типовых технологических процессов Δтрав = 0,1 – 0,5 мкм); αx – погрешность, вносимая за счет ухода базовой (эмиттерной) диффузии под окисел в боковую сторону. Через α обозначен коэффициент, учитывающий распределение примесей вблизи границы резистора, причем обычно 0 ≤ α ≤ 2. Для резисторов шириной более 10 мкм боковой диффузией можно пренебречь (α = 0). В более узких резисторах боковая диффузия оказывает значительное влияние, поэтому в расчеты необходимо вводить соответствующую поправку.

Затем выбирают шаг координатной сетки d(d = 0,l; 0,2; 0,5; 1 мм) и, задаваясь масштабом 100:1, 200:1 и т. д., определяют топологические значения ширины и длины резистора:

bтоп = Kbd ≥ bпром(9)

lтоп = Kld ≥ bпром(10)

где Кb, Kl– целые положительные числа.

После этого оценивают получающуюся погрешность

γR = [R(lтоп, bтоп) – R] / R,(11)

где R(lтоп, bтоп) – сопротивление, рассчитанное по (1) при l– lтоп; b= bтоп.

Если ׀γR׀ > γRзад , то ширину резистора увеличивают на величину dи все вычисления повторяют.


3.3. Расчет полупроводниковых резисторов.

Все расчеты проводятся по упрощенной схеме с использованием табличных значений из справочника. Выбираем ширину базовой области для резистора:

1) Низкоомные резисторы с номиналом R ≤ 1 кОм имеет ширину базовой области β = 30 мкм;

2) Высокоомные резисторы с номиналом от 1 кОм до 5 кОм (1 кОм ≤ R ≤ 5 кОм) выполняются с шириной базового слоя β = 20 мкм;

3) Высокоомные резисторы с номиналом R > 5 кОм выполняются с шириной базовой области β = 15 мкм.

Таким образом, достигается воспроизводимость параметров резисторов в объеме партии вследствие малого влияния боковой диффузии и погрешностей технологических операций.

Из справочных данных принимаем следующие величины удельного поверхностного сопротивления ρs:

1) при 100 Ом ≤ R ≤ 300 Ом ρs=120 Ом/□

2) при 300 Ом ≤ R ≤ 2,5 кОм ρs=222 Ом/□

3) при 3 кОм ≤ R ≤ 4 кОм ρs=320 Ом/□

4) при 5 кОм ≤ R ≤ 10 кОм ρs=240 Ом/□

Составим таблицу значений (таблица 3)

Таблица 3

Позиция R 1 R 2 R 3 R 4
Номинал, Ом 2500 8000 2000 100
Ширина диффузионнойобласти β, мкм 20 15 20 30
Удельное поверхностное сопротивление, ρs, Ом/□ 222 240 222 120

Исходя из того, что коэффициент формы «n» можно представить двумя формулами:

и
(12)

приравниваем правые части этих уравнений:

где β – ширина резистора, l – длинна резистора

Формула для расчета длины резистора l:

(13)

Все величины, входящие в формулу, нам известны, поэтому рассчитаем длину каждого из резисторов.

1)

Так как для чертежа топологии взят масштаб 400:1, то переведем величины β1 и l1 в мм:

l1 = 400 · 225.2 мкм = 90 080 мкм = 90 мм

β1 = 400 · 20 мкм = 8 000 мкм = 8 мм

2)

l2 = 400 · 500 мкм = 200 000 мкм = 200 мм

β2 = 400 · 15 мкм = 6 000 мкм = 6 мм

3)

l3 = 400 · 180.2 мкм = 72 080 мкм = 72 мм

β3 = 400 · 20 мкм = 8 000 мкм = 8 мм

4)

l4 = 400 · 25 мкм = 10 000 мкм = 10 мм

β4 = 400 · 30 мкм = 12 000 мкм = 12 мм


4. Проектирование технологии ИМС.

Основные правила проектирования топологии полупроводниковых микросхем с изоляцией р-n-переходом

Важнейший этап проектирования полупроводниковой микросхемы заключается в преобразовании ее электрической схемы в топологию. Сущность разработки топологии микросхем состоит в определении взаимного расположения элементов на подложке. Разработка топологии не сводится к размещению элементов на подложке. Этот процесс должен осуществляться так, чтобы обеспечить оптимальное расположение элементов, при котором уменьшается влияние паразитных эффектов, присущих полупроводниковым микросхемам. Поэтому одной из основных задач при разработке топологии микросхемы является выбор критерия оптимальности размещения элементов. В настоящее время при разработке топологии полупроводниковых микросхем с однослойной металлизацией обязательными считаются следующие критерии: минимизация общей суммарной длины соединений; минимизация числа пересечений межэлементных соединений.

Как уже отмечалось, разработка топологии микросхем производится в несколько этапов. После расчета геометрических размеров активных и пассивных элементов приступают к разработке эскиза топологии микросхем, который вычерчивается от руки в произвольном масштабе, но с сохранением приближенного соотношения габаритных размеров элементов. При разработке эскиза топологии в первую очередь определяют число изолированных областей (карманов), которые при изоляции обратносмещенным р-n-переходом создают с помощью разделительной диффузии акцепторных примесей. Таким образом, изолированная область представляет собой область n-типа, которая соответствует коллектору транзистора. Анализируя принципиальную электрическую схему, определяют число коллекторов, имеющих различные потенциалы. Этим числом в основном и обусловлено число необходимых изолированных областей.