Смекни!
smekni.com

Рупорно-линзовая антенна (стр. 3 из 5)

,

где

и
-коэффициенты фазы составляющих волн.

Условие вращающейся поляризации

, тогда длина секции:

Коэффициенты

и
можно выбрать из экспериментальных графиков на рис. 14

Рис. 14.


Определим размеры стенок волноводной секции:

В качестве диэлектрика выберем стеатитовую керамику, которая при длине волны

обладает следующими параметрами:
. Толщину диэлектрической вставки возьмем таким образом, что бы:

, то есть

При такой толщине вставки коэффициенты фазы имеют следующие значения :

Тогда длина секции будет равна:

Для того чтобы отражение волны от вставки было мало, концы диэлектрической пластины можно выполнить в виде симметричных ласточкиных хвостов, как показано на рис. 3. Следует отметить, что диэлектрическая вставка должна располагаться не прямо в стыке горла рупора с волноводной секцией, а за фазовым центром рупора

Рассчитаем параметры специальных металлических пластин, вставляемых в рупорно-линзовые излучатели с целью обеспечения одинаковых диаграмм направленности в Е- и Н-плоскостях при квадратном раскрыве рупоров. Вид такого рупора изображен на рис. 15. Расстояние между пластинами делается равным

.

Рис. 15.

Размеры пластин выберем в соответствии с этим рисунком.

Длины пластин раны длине рупора.

Рассчитаем длину рупорно-линзового излучателя. Обращаясь к рисунку 16 (сечение рупорно-линзового излучателя без пластин) видно, что

Таким образом,


Рис. 16.

Приступим к расчету коэффициентов отражения от линзы и горла рупора. Коэффициент отражения от горла рупора определяется формулой:

,

где

и
- размеры питающего волновода,
и
- углы раствора рупора в Н- и Е-плоскостях соответственно,
-длина волны в волноводе.

В нашем случае

и
это размеры фазирующей секции, причем
. Углы раствора рупора для волны
будут следующими. В горизонтальной плоскости угол будет таким, какой мы рассчитали ранее, а в вертикальной – он будет определяться пластинами внутри рупора. Пластины уменьшают угол раскрыва. Рассчитаем его по той же формуле, что и ранее, при этом, не забывая учесть, что пластины сужают сторону раскрыва (рис. 15) до:

Высота рупора в Е-плоскости будет другой, ее можно определить из соотношения:


, где
и
- размеры волновода (секции).

таким образом

Длина волны в фазирующей секции

м

Тогда

Теперь можно рассчитать
:

И модуль коэффициента отражения будет равен:


Для волны

все выше сказанное будет аналогично с той лишь разницей, что Е-плоскость сменится на Н, а Н – на Е. И коэффициент отражения будет таким же.

При таком отражении коэффициент бегущей волны в фидере будет следующим:

Будем считать КБВ удовлетворительным, однако, дальнейшее его снижение весьма нежелательно.

Коэффициент отражения от линзы R при углах падения 30…35 градусов можно с хорошим приближением считать равным R при нормальном падении, т. е.

,

Для достижения устранения отраженной волны используем такой путь. На диэлектрик линзы нанесем слой другого диэлектрика с коэффициентом преломления

и толщиной t, равной четверти длины волны в согласующем слое:

В качестве диэлектрика с указанным параметром выберем фторопласт-4, у которого при длине волны 5 см

.

Такой слой вполне удовлетворительно обеспечивает согласование до углов падения до 40 градусов, при этом

.

Определим коэффициенты полезного действия рупорно-линзового излучателя и волноводной фазирующей секции. КПД излучателя определяется в основном линзой, так как КПД рупора примерно равен единице. КПД линзы определяется по формуле:

, где
-средняя длина пути луча в теле линзы, в нашем случае
и
. Итак, учитывая, что линза состоит из двух слоев диэлектрика:

.

КПД поляризационной секции найдем по той же формуле. Он будет определяться диэлектриком.

Таким образом, можно сделать вывод, что КПД рупорно-линзового излучателя, вместе с поляризационной вставкой в основном определяется КПД линзы, и он равен 0.69.

Зная КПД одного излучателя решетки, и предполагая, что все элементы схемы питания и фидерного тракта имеют КПД близкие к единице, можно рассчитать КПД всей антенной решетки.