Трубку укрепляют на задней бабке токарного станка. Вращением винтов 1, расположенных через 90° вокруг оси шпинделя, подвижную часть патрона смещают в плоскости, перпендикулярной к оси шпиндели, так, что центр кривизны линзы
совмещается с осью шпинделя (рис. 3, б). Биения центра кривизны при вращении шпинделя в этом случае не наблюдается, биение центра кривизны увеличивается. Вращением винтов 2, перемещающих сферическую часть патрона, центр кривизны совмещают с осью шпинделя (рис.3, в). При этом центр кривизны не смещается с оси шпинделя, так как он был расположен, в одной плоскости с центром сферической части патрона. При вращении шпинделя биение обоих центров кривизны линзы отсутствует. В результате оправа линзы будет иметь перекос, но оптическая ось линзы будет совмещена с осью шпинделя. Вызванный юстировкой перекос оправы устраняют проточкой резцом 3 ее торца и наружной поверхности, не снимая линзы с центрировочного патрона. Наружную поверхность оправы линзы с 20** протачивают до размера, равного диаметру корпуса объектива, с минимально необходимым зазором (порядка 0,01 мм). Торец оправы подрезают так, чтобы можно было выдержать указанный на чертеже линзы размер 0,54 ± 0,01 мм. Расстояние от линзы до торца при подрезке измеряют индикаторным приспособлением, показанным на рис. 4, а. Затем линзу снимают с центрировочного патрона и устанавливают в цанговый патрон токарного станка на обработанное базовые поверхности. Подрезают второй опорный торец оправы таким образом, чтобы выдержать размер 3±0,01 мм до второй поверхности линзы (см. рис. 4, б). Процесс центрирования линзы окончен.Устройство автоколлимационной трубки ЮС-13. Схема автоколлимационной трубки ЮС-13 приведена на рис. 5. Прозрачное перекрестие па зеркале 8 трубки, подсвеченное осветителем 7, проецируется объективом 2 на плоскость, в которой расположен центр
кривизны центрируемой линзы 1.Рис.3. Центрировочные линзы.
Рис.4. Обработка оправы линзы после центрирования
Изображение перекрестия совмещают с центром кривизны линзы в поперечном направлении путем наклона трубки при разгибании пружины 5 винтом 6. Лучи, света, образующие изображение перекрестия в центре кривизны линзы, отражаются от поверхности линзы, установленной на центрировочном патроне, и возвращаются в трубку собранные объективом 2 на зеркале 8. Отразившись от зеркала, лучи образуют увеличенное изображение перекрестия па измерительной сетке 4 микроскопа 3.
Наблюдение за децентрировкой С центра кривизны линзы ведут при вращении шпинделя станка. Схема наблюдения показана на рис.6. Осевой луч t пучка, выходящего из трубки ЮС-13, из-за смещения
центра кривизны отражается от линзы по направлению и возвращается в объектив трубки под углом по отношению к первоначальному направлению, пучка t. При повороте шпинделя на 180° центр кривизны линзы займет положение и осевой луч t отразится по направлению , возвращаясь также под углом к лучу t, но с противоположной стороны от оси шпинделя. Таким образом, при повороте шпинделя с линзой отраженный луч описывает коническую поверхность с углом конуса . В результате изображение перекрестия трубки, образуемое отраженными лучами , описывает на сетке микроскопа окружность, диаметр D которой соответствует N делениям сетки.Диаметр окружности (в мм)
, (1)где С — децентрировка центра кривизны линзы в мм;
— линейное увеличение объективе микроскопа 3(рис. 5); — линейное увеличение объектива 2 трубки; — интервал деления сетки микроскопа в мм.Из формулы (4) следует, что величина децеитрировки
Рис.5. Схема автоколлимационной трубки ЮС-13
Перемещая объектив 2 (рис. 5.) в тубусе, изображение перекрестия трубки можно поместить практически на любое расстояние S от торца тубуса объектива. Величина S лежит в пределах от —5 см до —∞ и от +∞ до 9 см, что позволяет наблюдать изображения центров кривизны поверхностей линз с радиусами любой величины. При этом изменяется увеличение
. Для удобства определения децентрировки С на трубке нанесена шкала величины , выраженной в микрометрах, для каждого положения объектива 2 в тубусе.Рис.6. Схема наблюдения децентрировки.
Значения К для трубки ЮС-13 с объективом 2, состоящим из двух склеенных линз, приведены в табл. 1.
Таблица 1
S в см К в мкм | —5 —6 —7 —9 —10 —14 —20 —50 —190 3 5 7 9 10 15 21 51 200 |
S в см К в мкм | +64 +33 +20 +16 +12 +10 +9 64 33 20 15 10 8 6 |
При положении шкалы трубки «∞» угол наклона плоской поверхности линзы, соответствующий диаметру биения перекрестия в одно деление шкалы, равен 19" (для трубки ЮС-13).
Определив по сетке трубки число делений N, занимаемых диаметром окружности биения автоколлимационного блика от поверхности линзы, определяют децентрировку поверхности:
С = KN (2)
Допустимое биение центров кривизны
для каждой поверхности линзы указывают в технологической карте сборки в виде допустимого числа делений трубки:Рис.7. Автоколлимационные точки одиночной линзы.
Расчет автоколлимационных точек. Автоколлимационной точкой называется точка на оси линзы, в которую необходимо поместить светящееся изображение перекрестия трубки чтобы получить отраженное от поверхности линзы изображение перекрестия па сетке трубки. Автоколлимационные точки для всех поверхностей линзы рассчитывают и вписывают в технологическую карту сборки. Отсчет положения автоколлимационных точек ведут от поверхности линзы, ближайшей к трубке ЮС-13.
Расчёт ведут по следующим формулам нулевых лучей для хода луча через преломляющие поверхности
- для высоты луча; -для углов;При расчёте соблюдают правило знаков, принятое в геометрической оптике.
Определим автоколлимационные точки для линзы, показанной на рис.7.
Радиусы линзы
=-30,1 мм; =35,26 мм; толщина линзы =2мм;показатель преломления
=1,6242 мм; показатель преломления воздуха .Из точки
направляем луч на высоте по радиусу и определяем точку пересечения этого луча с осью линзы (точка ) после преломления на поверхности 2. Эта точка и будет автоколлимационной точкой для поверхности 1. Высоту принимают равной единице. Как следует из рис. 7,