где К4 - электрическая постоянная якоря генератора.
6) Ток Iдв, протекающий по обмотке якоря двигателя, определяется разностью напряжения на щетках якоря Uя и противо-ЭДС Е, вырабатываемой вращающимся якорем.
Эта связь является инерционной в силу того, что якорь имеет значительную индуктивность, и описывается дифференциальным уравнением
где К5 - индуктивность обмотки якоря, К6 - ее активное сопротивление.
,7) Вращающийся момент на валу двигателя Мдв определяется мгновенными значениями тока Iдв, протекающего по виткам якорной обмотки, и магнитного потока, возбуждения Фв, пересекающего витки якоря. Величина момента Мдв пропорциональна каждой из переменных Iдв и Фв:
где К7 - моментная постоянная якоря двигателя.
8) Угловое ускорение вала двигателя есть производная от угловой скорости его вращения Wдв. В свою очередь, угловое ускорение вала согласно закону Ньютона пропорционально действующему на него суммарному вращающему моменту, который равен разности вращающего момента Мдв и момента сопротивления нагрузки Мс, приведенного к валу двигателя:
где К8 - суммарный момент инерции якоря, редуктора и нагрузки, приведенный к валу двигателя.
9) Якорь двигателя, вращающийся со скоростью Wдв в магнитном потоке возбуждения Фв, фактически представляет собой генератор, вырабатывающий противо-ЭДС Е. Поэтому вид уравнения, связывающего Е с Wдв и Фв, такой же как и в п.5:
где К9 - электрическая постоянная.
10) Связь потока возбуждения двигателя Фв с током возбуждения Iв выразим аналогично п. 3 в виде кривой намагничивания стали в статоре двигателя:
11) Уравнение связи тока возбуждения двигателя Iв с напряжением возбуждения Uв аналогично уравнению в п.2 для тока возбуждения генератора:
где К10 и К11 - соответственно индуктивность и активное сопротивление обмотки возбуждения двигателя.
,12) Скорость подачи электрода Vп пропорциональна скорости двигателя Wдв
где К12- коэффициент передачи редуктора.
13) Зависимость сопротивления сварочной дуги Rд и тока сварочной дуги Iд от напряжения трансформатора Uт
где К13, К14- коэффициенты пропорциональности
14) Скорость сжигания подложки Vс пропорциональна току сварочной дуги Iд
где К15- коэффициент пропорциональности
15) Величина зазора между электродом и подложкой L пропорциональна суммарной скорости, которая равна сумме скорости подачи электрода Vп и скорости сгорания подложки Vс
где К16- коэффициент пропорциональности
16) Сопротивление сварочной дуги Rд пропорционально зазору между электродом и подложкой L
где К17- коэффициент пропорциональности
17) Напряжение сварочной дуги Uд зависит от тока сварочной дуги Iд, а также от сопротивления сварочной дуги Rд . Напряжение сварочной дуги Uд пропорционально каждой из переменных Iд и Rд ,т.е. пропорционально их произведению:
где К18- коэффициент пропорциональности
18) Напряжение снимаемое с диагонали диодного моста пропорционально Uд.м напряжению сварочной дуги Uд
где К19- коэффициент пропорциональности
19) Уравнение связи тока возбуждения генератора I2 с напряжением возбуждения Uд.м аналогично уравнению в п.2 для тока возбуждения генератора:
где К10 и К11 - соответственно индуктивность и активное сопротивление обмотки возбуждения генератора.
,20) Связь потока возбуждения генератора Ф2 с током возбуждения I2 выразим аналогично п. 3 в виде кривой намагничивания стали в статоре генератора:
21) Напряжение на выходе трансформатора Uт пропорционально напряжению сети Uс
где К22- коэффициент трансформации
22) Напряжение в потенциометре URпропорционально напряжению диодного моста Uд.м
где К23- коэффициент пропорциональности
Дифференциальные уравнения могут быть как линейные, так и нелинейными. Нелинейные дифференциальные уравнения вносят значительные затруднения в решение реальных задач, особенно в тех случаях, когда они имеют высокий порядок. Поэтому очень часто стараются заменить в первом приближении нелинейное дифференциальное уравнение линейным, анализ которого выполняется значительно проще. Методика выполнения такой замены называется линеаризацией.
Линеаризация системы дифференциальных уравнений САУ основана на двух предложениях.
1. Предполагается, что при номинальной работе системы отклонения внешних воздействий от их постоянных номинальных значений малы, а следовательно, малы и отклонения всех переменных в системе.
Однако, необходимо отметить, что это предположение выполняется далеко не всегда.
2. Все функции от переменных, входящих в данное уравнение, не имеют разрывов и являются гладкими при номинальных значениях аргументов. Другими словами, предполагается, что для каждой функции существуют первые производные по всем аргументам в точке, соответствующей номинальному режиму. В противоположном случае, если хотя бы одна из функций, входящих в уравнения, имеет разрыв в точке номинального режима, либо не является гладкой в этой точке, то такое уравнение, а также сама функция называются существенно нелинейными. Линеаризация таких уравнений и функции невозможна.
Номинальные значения переменных обозначаются большими буквам с верхним нулевым индексом:
X(t)= X0= const, U(t)= U0= const ит.д
Отклонения переменных обозначаются соответствующими маленькими буквами:
x(t)=X(t) – X0 и т.д
Очевидно, что в номинальном режиме отклонения всех переменных в системе, а также производные отклонений по времени равны нулю.
Дифференциальное уравнение является линейным, если функция f1(…) и f2(…) в левой и правой частях являются линейными комбинациями переменных и их производных:
В частном случае, если функции f1(...) и f2(...) не содержат в качестве аргументов производных искомой функции и заданных функций, дифференциальное уравнение (1) превращается в обычную функцию определяющую зависимость переменной X(t) в какой-либо момент от мгновенных значений аргументов Y(t), ..., Z(t) в тот же момент:
(3)Такой вид математической модели означает, что моделируемый объект рассматривается как статический (безинерционный). САР напряжение сварочной дуги-это статическая система, так как всегда будет присутствовать ошибка регулируемого параметра, в силу нелинейной зависимости числа оборотов двигателя от величины магнитного потока возбуждающей компенсирующей обмотке 2.