Смекни!
smekni.com

Система прямого регулювання тиску газу з І-регулятором (стр. 2 из 3)

Корекцію системи проведемо при заданих якісних параметрах (час регулювання tp = 4,7с перерегулювання δ = 30%). Побудуємо ЛАХ бажаної роботи системи та корегуючого пристрою (рис. 8).


Рис. 5. ЛАХ заданої системи (Lз), бажаної (Lб) та коректую чого пристрою (Lк)

Складемо передаточні характеристики для бажаної та корегуючої систем:

wб(s) =

Враховуючи, що

wб(s) = wз(s)·wк(s),

отримаємо wк(s) =

.

2.7 Схема корегуючого пристрою та розрахунок його елементів

Приведемо схему корегуючого пристрою, обравши його з довідника. Згідно з наявною ЛАХ, що приведена вище, найбільше нашим вимогам задовольняє схема №33 корегуючого пристрою (рис. 6).


а) б)

Рис. 6. Схеми корегуючого пристрою та відповідні фрагменти ЛАХ:а) фрагмент ЛАХ, що відповідає схемі №33; б)схема №33 (К).

Розрахуємо кожен з елементів схем:

Для схеми №33

1) L0=

,L¥=
.

Оберемо ємності конденсаторів: С1=100мкФ, С2=100мкФ та значення опору R2=1кОм.

2) Т1 =

Þ
.

3) T2=

Þ
.

4)

Оберемо підсилювач з таким коефіцієнтом підсилення: 20lgk=37, k=10(37/20)=70,8 (П).

Підберемо з ряду опорів Е24 відповідні значення опорів: R1 = 0,04кОм, R2 = 1 кОм, R3 = 0,5кОм, R4 = 1,5 кОм.


2.8 Розрахунок та побудова графіку перехідної характеристики скорегованої САК

Визначимо аналітичний вираз для перехідної характеристики замкнутої скоректованої системи за передаточною функцією розімкнутої САК при одиничному ступінчатому вхідному сигналі та побудуємо графік.

Передатна функція w(s) =

.

Передатна функція замкненої системи:

Перехідна характеристика замкненої системи за вхідним сигналом:

H(s)=G(s)*Ф(s),

де G(s) =

- одиничний ступінчатий вхідний сигнал.

H(s) =

.

Графік перехідної характеристики САК зображений на рис. 10.

Рис. 7. Перехідна характеристика САКк


2.9 Для заданого типу збурення розрахунок та побудова графіку усталеної помилки скорегованої САК

Дослідимо точність замкнутої системи за передаточною функцією розімкнутої САК. При дослідженні визначимо три коефіцієнти помилок С0, С1, С2, використовуючи передаточну функцію замкнутої системи за похибкою:

Фx(s) =

Тоді

_

Тобто С0 = 0, С1 =0,17, С2 = -0,017.

Побудуємо графіки помилок в усталеному режимі при:

- одиничному ступінчатому сигналі G1(t) = 1 (G1(s) = 1/s) (рис. 11).

- помилка від вхідної керуючої дії.

- усталена похибка.

Рис. 8. Графік похибки САК


при сигналі G2(t) = 0.1t (рис. 12),

- помилка від вхідної керуючої дії.

- усталена похибка.

Рис. 9. Графік усталеної похибки САК

2.10 Оцінка якості скорегованої САК

Оцінимо якість перехідних процесів у заданій системі:

- перерегулювання δ – відносне максимальне відхилення перехідної характеристики від усталеного значення вихідної координати, виражене у відсотках:

δ =

.

(hmax, hуст – відповідно максимальне та усталене значення перехідної характеристики для досліджуваної системи побачимо на графіку (рис.10))

δ =

.

- час регулювання (час перехідного процесу) tp – мінімальний час, після сплину якого регульована координата буде залишатися близькою до усталеного значення із заданою точністю

.

, тоді tp = 4,5 (с).

- число коливань n, яке має перехідна характеристика h(t) за час регулювання tp:

n = 1.

Висновок: проведений аналіз системи показав, що вона стійка, тому на етапі корекції було проведено збільшення запасів на 10% та покращення якісних параметрів.

2.11 Моделювання системи в програмному модулі Simulink

Змоделюємо систему в програмному модулі Simulink – зберемо структурну схему отриманої скоректованої системи (рис. 13).

Рис. 10. Модель скоректованої САК в програмному модулі Simulink

1) Реакція системи на одиничний ступінчатий сигнал (рис. 14).

Рис. 11. Реакція системи на одиничний вхідний сигнал

Порівнюючи реакцію САК, отриману за допомогою моделювання (рис. 14), з теоретично отриманою перехідною характеристикою (рис. 10) в пункті 3.8 виявили, що вони співпали (розрахунки в обох випадках проведені правильно).

1) Побудова графіка вихідної координати при заданій вхідній дії:

g(t) = 0,1t (рис. 16).

Змоделюємо систему з заданою вхідною дією в програмному модулі Simulink (рис. 15).

Рис. 12. Модель САК з заданою вхідною дією

Реакція системи на вхідний сигнал (рис. 16).

Рис. 13. Реакція САК на задану вхідну дію

З графіків видно, що робота системи залежить від вхідного сигналу.


3. Аналіз дискретної САК (ДСАК)

В основі аналізу дискретної САК візьмемо лінійну неперервну САК після корекції з передаточною характеристикою w(s) =

.

3.1 Визначення періоду дискретизації імпульсного елемента

В якості формоутворювача сигналу приймемо екстраполятор нульового порядку.

ωз = 30 с-1 – максимальна частота в спектрі вхідного сигналу.

За теоремою Котельникова для нормальної роботи системи необхідно, щоб виконувалася умова Tk =

- період дискретизації, відповідно ωк ≥ 2ωз – частота дискретизації. Оберемо ωк ≥ 2·30 = 60 с-1, тоді

Tk

(с).

Виберемо період дискретизації Tk = 0,002 с, ωк = 1571 с-1.

3.2 Визначення передаточної функції розімкнутої та замкнутої ДСАК відносно вхідної дії

w(z) =

.

Спочатку розкладемо функцію на простіші дроби:


.

Виконаємо z-перетворення Лапласа отриманої функції:

.

Передатна функція замкненої ДСАК:

.

3.3 Визначення стійкості отриманої системи по критерію Гурвіца

Знаючи перехідну функцію, знайдемо характеристичне рівняння системи:D(s)=

.

Виконаємо білінійне перетворення

.

Отримаємо наступне характеристичне рівняння:


На основі отриманих коефіцієнтів характеристичного рівняння побудуємо головний визначник Гурвіца: