D =
.За критерієм Гурвіца для того, щоб система автоматичного керування була стійкою, необхідно та достатньо, щоб при а0>0 всі визначники Гурвіца були додатними.
а0=7,529>0,
Умова стійкості системи виконуються, отже за критерієм Гурвіца САК стійка.
3.4 Побудова логарифмічної псевдочастотної характеристики ДСАК та визначення запасів стійкості
Для побудови логарифмічної псевдочастотної характеристики використаємо передаточну функцію розімкненої системи після корекції та виконання z- перетворення:
Виконаємо
де l - абсолютна псевдочастота, с-1.
Знайдемо нульову контрольну точку: L0 = 20lgk = 20lg5,455 = 4,74 дБ.
Визначимо спряжені частоти:
λ1 =
= 40с-1, λ2 = = 22с-1,λ3 =
= 555,6с-1, λ4 = = 0,05с-1.Враховуючи, що до складу системи входить пропорційна, інтегруюча, дві аперіодичні ланки першого порядку та дві форсуючі ланки отримуємо ЛАХ і ЛФХ для даної САК (рис. 17).
Рис. 14. Логарифмічні частотні характеристики системи.
Знайдемо запаси стійкості системи за ЛАХ та ЛФХ:
· по амплітуді запас стійкості h=µ (DL), тому що ЛФХ не перетинає межу -p.
· по фазі:
Δφ = π-Arg(w(j*ωз)),
де ωз – частота зрізу, коли L(ωз) = 1, тобто
ωз = 30. Тоді Δφ = arg(w(j*8) = -85°.
3.5 Розрахунок та побудова графіку перехідної характеристики ДСАК
Для побудови перехідної характеристики ДСАК використаємо перехідну характеристику замкненої системи отриману раніше.
Розрахуємо перехідну характеристику
ДЦСАК Y(z) = Ф(z)*G(z),
де G(z) =
- зображення вхідного одиничного сигналу. Тобто .Побудуємо графік перехідного процесу, попередньо розклавши перехідні характеристики в ряд Лорана:
_
_
_
_
_
Тобто С0=0,0005, C1 = 0,00075, C2 = 0,00486, C3 = 0,02112, C4 = 0,076, C5 = 0,193. За цими даними побудуємо графік - гістограму перехідного процесу (рис. 18).
Рис. 15. Перехідна характеристика досліджуваної ДСАК
Провівши розрахунки та побудову за допомогою MathLabотрималитакі результати:
Отримані перехідні характеристики в обох випадках не співпадають, що означає неточність розрахунків, а також специфіку розрахунку передаточних відношень в MathLab.
3.6 Для заданого типу вхідної дії розрахунок та побудова графіку усталеної помилки ДСАК
Дослідимо точність замкнутої системи за передаточною функцією розімкнутої САК. При дослідженні визначимо три коефіцієнти помилок С0, С1, С2, використовуючи передаточну функцію замкнутої системи за похибкою:
Фx(z) =
.Виконаємо заміну
, тоді отримаємо такий вираз: .Для побудови графіку усталеної похибки визначимо коефіцієнти С0 та С1 – коефіцієнти похибок, які є коефіцієнтами розкладу передаточної функції системи за похибкою Фx(z) в ряд Маклорена за степенями s, тобто
, в нашому випадку:В загальному випадку при вхідній дії, що повільно змінюється, усталену похибку системи можна представити у вигляді ряду
В нашому випадку при g(n)=20+40n+5n2усталена похибка має вигляд:
Рис. 16. Графік усталеної похибки ДСАК.
3.7 Оцінка якості ДСАК
Для оцінки якості ДСАК розрахуємо та побудуємо перехідну характеристику.
Рис. 17. Перехідна характеристика ДСАК
Оцінимо якість перехідних процесів у заданій системі:
- перерегулювання δ – відносне максимальне відхилення перехідної характеристики від усталеного значення вихідної координати, виражене у відсотках:
δ =
.(hmax, hуст – відповідно максимальне та усталене значення перехідної характеристики для досліджуваної системи побачимо на графіку (рис.20))
δ =
.- час регулювання (час перехідного процесу) tp – мінімальний час, після сплину якого регульована координата буде залишатися близькою до усталеного значення із заданою точністю
. , тоді tp = 430 (с).- число коливань n, яке має перехідна характеристика h(t) за час регулювання tp:
n = 1.
Висновок
Провівши аналіз ДСАК можна сказати, що отримана система після квантування є стійкою, коефіцієнт підсилення співпадає з коефіцієнтом підсилення лінійної САК; отримані результати вказують на те, що аналіз проведений правильно, хоча деякі якісні параметри ДСАК відрізняються від лінійної САК, це вказує на те, що деяка інформація про систему під час квантування все ж втратилась.
Список літератури
СамотокінБ. Б. Лекції з теорії автоматичного керування. –Житомир ЖІТІ, 2001. -504с.
Топчеев Ю. И. Атлас для проектирования систем автоматического регулирования. –Москва „Машиностроение”, 1989. -752с.
БесекерскийВ. А., Попов Е. П., Теория систем автоматического регулирования, 3 изд., М., 1975.