Смекни!
smekni.com

Системи сигнализації (стр. 9 из 9)

ПРОПОНОВАНА СИСТЕМА ПРАЦЮЄ ТАКИМ ЧИНОМ

Випромінювання когерентного джерела світла 1 (Фіг. 1) вводиться у відрізок багатомодового оптичного волокна 2 і через формувач світлового потоку 3 поступає на вхід фотодетектора 4. В результаті міжмодової інтерференції в оптичному волокні на світлочутливій поверхні фотодетектора 4 формується дискретна картина з яскравих і темних плям (спеклов|), яка носить статичний характер за відсутності механічних дій і змінюється під впливом ударів, вібрації або деформації оптичного волокна. Формувач світлового потоку 3 забезпечує необхідну контрастність спеклової| картини для підвищення чутливості системи.

Сигнал з виходу фотодетектора 4 (позиція а на Фіг. 2) поступає на вхід формувача сигналу тривоги 5. Залежно від інтенсивності і тривалості механічної дії на оптичне волокно модулюється фотострум, рівень якого відповідає величині оптичної потужності на вході фотодетектора 4. Далі у формувачі сигналу тривоги 5 відбувається двоконтурне перетворення вхідного сигналу по змінній і постійній складовим. Змінна складова виділяється розділовим конденсатором 6 і поступає на перший вхід першого компаратора 7, на другому вході якого встановлений опорний рівень Uоп1. Імпульси з виходу першого компаратора 7 (позиція б на Фіг. 2) поступають на вхід селектора тривалості сигналу 8, який має час селекції с. У разі, коли c<2 селектор запускає формувач тривалості імпульсів 9, при цьому ф встановлюється залежно від необхідної тривалості проходження сигналу тривоги (позиція в на Фіг. 2). У разі, коли c>1, селектор блокує контур.

Постійна складова через інтегратор 10 поступає на перший вхід другого компаратора 11, на другому вході якого встановлений опорний рівень Uоп2. Залежно від рівня оптичної потужності на вході фотодетектора 4 другий компаратор 11 формує відповідний сигнал (позиція г на Фіг. 2). Цей сигнал подається на перший вхід логічного елементу АБО 12, на другий вхід якого подається сигнал з виходу першого компаратора 7. При появі сигналу на першій або на другому вході елементу АБО 12 з виходу елементу АБО 12 сигнал тривоги (позиція д на фіг. 2) після двоконтурного перетворення поступає на індикаторний елемент 13.

Таким чином, заявлений винахід дозволяє підвищити стійкість системи до випадкових зовнішніх дій, що, у свою чергу, дозволяє встановлювати її на відкритих елементах огорожі території, конструктивних блоках будівель і споруд. Введений у формувач сигналу тривоги 5 контур обробки вхідного сигналу по постійній складовій підвищує надійність роботи системи і дозволяє діагностувати потенційну її відмову.

Трубка з будь-якого оптичного непрозорого матеріалу як формувач світлового потоку простіша в реалізації, установці і настройці, що спрощує практичну реалізацію системи.

ФОРМУЛА ВИНАХОДУ

Волоконно-оптична система охоронної сигналізації, що містить когерентне джерело світла, вихід якого через відрізок багатомодового оптичного волокна і формувач світлового потоку зчленований з входом фотодетектора, вихід фотодетектора сполучений з входом формувача сигналу тривоги, виконаного у вигляді розділового конденсатора, першого компаратора, формувача тривалості імпульсів і індикаторного елементу, перше обкладання розділового конденсатора є входом формувача сигналу тривоги, а друге обкладання сполучене з першим входом першого компаратора, на другому вході якого встановлений опорний рівень першого компаратора, що відрізняється тим, що формувач сигналу тривоги забезпечений інтегратором, селектором тривалості сигналу, логічним елементом АБО і другим компаратором, перший вхід якого через інтегратор сполучений з першим обкладанням розділового конденсатора, на другому вході встановлений опорний рівень другого компаратора, а вихід сполучений з першим входом логічного елементу АБО, другий вхід логічного елементу АБО сполучений через формувач тривалості імпульсів з виходом селектора тривалості сигналу, вхід якого сполучений з виходом першого компаратора, вихід логічного елементу АБО сполучений з входом індикаторного елементу.

Висновок

Очевидно, що з безлічі сучасних| охоронних систем неможливо виділити одну, яка була б універсальною і якнайкращою зі всіх точок зору. При виборі і проектуванні системи охорони необхідно враховувати безліч чинників — рельєф місцевості, топографію об'єкту, конструкцію охороняємого обєкту, що оточують, індустріальні перешкоди, організацію служби охорони і ін.

Ультразвукові детектори – є досить чутливими приладами і знизькою перешкодостійкістю.Але площа охопленя є невелика і застосовуються вони тільки в приміщенях без протягів, є досить дорогими.Характерактеризуються значним споживаням потужності.

Радіохвильові детектори –реагують на зміну електро-магнітної проникності тіла людини,можуть застосовуватись на значних площах.Є чутливими до потужних джерел випромінюваня.Потребують специфічного встановленя.

Магнітоконтактні датчики –є досить поширеними, характеризуються великою надійністю, простотою встановленя, низькою вартістю.Використовуються тільки для розємних засобів. Застосовуються для захисту дверей і вікон від несанкціонованого відкриття. Складаються з 2-х елементів, один встановлюється на рухому частину вікна або дверей, других на нерухому дверну коробку або раму.

Захист тільки від несанкціонованого відкриття дверей або вікна. Не допомагають при проломі або розбитті скла

Вібродатчики –реагують на вібраційні коливаня.Характеризуються малою чутливістю до переміщеня обєктів.Мають досить малі розміри.

Фотоелектричні датчики–є засновані на інфрачервоному випромінюванні. Характеризуються високою чутливістю,непомітністю, малою потужністю споживаня. Принцип дії таких датчиків заснований на контролі за інфрачервоним (тепловим) випромінюванням в приміщенні, що захищається. При зміні інфрачервоного фону в приміщенні, що відбувається у момент переміщення людини, датчик формує сигнал тривоги. Ще такі датчики називають датчиками руху. Дальність виявлення в середньому 10-15 м. |

Вірогідність помилкових тривог при циркуляції повітряних мас в приміщенні, що охороняється

Радіопроменеві системи-характеризуються значними площами охорони до 120м Для нормальної роботи мають використовуватись парами.Мають значну вартість і вилику потужність споживаня


ПЕРЕЛІК ВИКОРИСТАНИХ ДЖЕРЕЛ

1 .Вовків А. УЗ датчик охоронної сигналізації. — Радіо, 2003 № 5, с. 54—56

2.www.itsf.ru/bespr.htm

3. Козаченко В., Хмельовськая Л. Кодовий замок// Радіо.-1990.-№8

4.Свірській Ю.К. Ринок периметровых| засобів охоронної сигналізації на порозі третього тисячоліття // Системи безпеки, 2000 № 38, с. 26 – 30.

5. Марченко Д.Н. Просте економне охоронне устройство// Радюаматор.-2000.-№9.

6. Нечаєв І. ІК-локатор для сліпих. - Радіо, 1989 N10, С.84

7. («Радіомир» №9/2004, с.38-44.

8. Вілл В. Інфрачервоний сторож. — Радіо, 1996 № 1,с. 52—54.

9. Вілл В. Ультразвукий автосторож. — Радіо, 1996 № 4,с. 43—49.

10.Яроцкий В.А. Методи виявлення і визначення місцеположення об'єктів по їх постійному магнітному полю // Зарубіжна радіоелектроніка, 1984 № 7, с. 45 – 56.

11. . Виноград Ю. Электронная охрана. - М.: СИМВОЛ-Р|, 1996

12. Радіо, 1998 N7, С.42

13. daily.sec.ru

14 Свірській Ю.К. Ринок периметрових| засобів охоронної сигналізації на порозі третьоготисячоліття // Системи безпеки, 2000 № 38, с. 26 – 30.

15.Магнітометричний пристрій для охоронної сигналізації // Патент РФ № 2075905 від 20.03.96

16. "Спеціальна Техніка" № 4, 2001 рік