Смекни!
smekni.com

Системы с прерывистым входным сигналом. Математическое описание дискретных систем (стр. 2 из 2)

Дискретное преобразование Лапласа:

,

где

─ изображение;
─ оригинал.

Для анализа систем преобразование Лапласа неудобно, так как изображение является трансцендентной функцией переменной. Поэтому путем замены переменной

переходят к z-преобразованию:

.

Основные свойства z-преобразования определяются рядом теорем:

- теорема обращения, позволяющая по изображению определить оригинал:

;

- z-изображение суммы или разности дискретных процессов:

;

- z-изображение произведения постоянной величины и дискретного процесса:

;

- теорема о конечном значении оригинала:

;

- теорема о начальном значении оригинала:

;

- теорема свертки оригиналов:

;

- теорема запаздывания: при ненулевых начальных условиях ─

;
;

при нулевых начальных условиях ─

;

- z - преобразование непрерывной функции времени:

,

где

─ непрерывная величина.

Z-преобразование изображения по Лапласу непрерывного процесса по определению совпадает с z-преобразованием процесса

:

;

,

где

─ непрерывная величина.

Таким образом,

.

ЛИТЕРАТУРА

1. Коновалов. Г.Ф. Радиоавтоматика: Учебник для вузов. – М.: Высш. шк., 2000.

2. Радиоавтоматика: Учеб. пособие для вузов. / Под ред. В.А. Бесекерского. - М.: Высш. шк., 2005.

3. . Первачев С.В. Радиоавтоматика: Учебник для вузов. - М.: Радио и связь, 2002.

4. Цифровые системы фазовой синхронизации / Под ред. М.И. Жодзишского – М.: Радио, 2000.