Откуда определяем время выборки:
(7.7)
Таким образом, период АЦП или в его составе должно быть устройство выборки и запоминания, время которого не превышало бы 0,134 мкс, при отсутствии такого устройства время преобразования АЦП не должно быть более 0,4225 мс. Число разрядов АЦП находим по формуле:
(7.8)
При заданных приделах изменения входного сигнала шаг квантования АЦП:
(7.9)
Приведенные выше расчеты позволяют осуществить выбор АЦП. При выборе учитывается, что приведенная инструментальная ошибка не должна превышать 0,0625%.
Учитывая все выше изложенное, выбираем АЦП типаAD7812.
Она представляет собой10-разрядный аналогово-цифровой преобразователь,8-ми канальный, время преобразования которого 2,3мкс,выполненный по КМОП - технологии. АЦП работает с однополярным питание от 2.7 до 5.5 В. Входное аналоговое напряжение должно иметь уровень от 0 до VDD, где VDD напряжение питания. В нашем случае необходимо взять +5В. Так как АЦП выполнено по КМОП технологии, то нам нет необходимости применять преобразователи уровня, а наличие встроенного коммутатора на 8 каналов позволят нам не применят отдельно коммутатор каналов.
По условию задания у меня вид помехоустойчивого кода - код Хемминга. Код должен обеспечивать исправление всех однократных ошибок, кодовая комбинация должна содержать номер датчика, значение измеряемой величины и проверочные символы.
(8.1)
В свою очередь, (8.2)
Где - количество разрядов АЦП, необходимых для преобразования аналогового сигнала датчика в цифровой;
- количество разрядов, необходимых для выбора одного из двух каналов. Тогда согласно выражению (8.2) . Из выражения (8.1) находим ( ). Для и строим проверочную матрицу:
По проверочной матрице записываю проверочные уравнения:
(8.3)
Из проверочных уравнений записываю выражения для проверочных символов:
Полученные выражения для проверочных символов дают алгоритм кодирования. Таким образов кодирование кодом Хемминга можно получить с помощью сумматоров по модулю 2.
Во многих реальных двоичных каналах наблюдается явление группирования ошибок, которое выражается в резком увеличении вероятности трансформации символов на небольших интервалах времени. В промежутках между ними ошибки появляются редко.
Существуют различные модели таких каналов с памятью. Наиболее простая их них и в тоже время наиболее эффективная описывается двумя параметрами: средней вероятностью р искажения двоичного символа ипоказателем группирования ошибок. Вероятность появления в кодовой комбинации из n символов m или более ошибок определяется выражением:
(9.1)
Расчёт вероятности правильного приёма кодовой комбинации производиться в соответствии с формулой (9.2):
(9.2)
Длительность кодовой посылки определяется по формуле:
; (10.1)
где - интервал дискретизации,
- длина кодовой комбинации,
- количество каналов телеизмерения.
Получим
Ширина полосы пропускания:
(10.2)
где - коэффициент воспроизведения импульса ( ), возьму
Можно сделать вывод о том, что полоса пропускания линии связи составляет не более 37,88 кГц.
За основу взята серия К564 с КМОП логикой из следующих соображений: эти устройства обладают высокой помехоустойчивостью, устраивающим нас быстродействием, высокой надежностью, большим диапазоном рабочих температур, низким энергопотреблением.
Применим многоканальный АЦП, благодаря чему блок коммутации будет входить в состав АЦП.
В качестве регистра RG1 используется универсальный регистр К564ИР6. Для записи, преобразования с параллельного в последовательный код18-ти разрядного кода берем три микросхемыК564ИР6и соединяем их следующим образом: восемь разрядов подаем на 1-й регистр, и восемь подаем на 2-й регистр, а оставшиеся 2 разряда подаем на третий регистр.
Последовательный код снимаем счетвёртого выхода третьего регистра.
Для построения схемы управления мультиплексором и самой схемой необходимо два четырёхразрядных счётчика. Для этой цели выбираем микросхему К564ИЕ10, в одном корпусе которой находятся двачетырёхразрядных двоичных счётчика. Также в схему управления нужен пятнадцатиразрядный дешифратор. Выбираю схему К564ИД4, представляющая собой восьмиразрядный дешифратор. Мне необходимо две такие микросхемы и один инвертор (для выбора дешифратора).
Для организации коэффициента перерасчёта второго счётчика равного 2 необходим элемент "И". Такой элемент реализован на микросхеме К564ЛА7. Так как его выходы инверсные, то мне ещё понадобиться инвертор.
В качестве элементов, которые генерируют проверочные символы в кодере, выбираю микросхему К564ЛП2. В качестве RS - триггера беру микросхему К564ТМ2, у которой не используются входа D и С.
В результате выполнения курсового проекта был разработан передающий полукомплект кодоимпульсной системы телеизмерений.
Разработанный полукомплект полностью отвечает всем требованиям технического задания.
Система разработана с использованием серийно выпускаемых ИМС КМОП - технологии.
Разработанный полукомплект кодоимпульсной системы телеизмерений можно применить в системах телемеханики, где необходимо передавать значения напряжения, которое снимается с датчиков в пределах от 0 до +5 вольт в линию связи.
Система использует помехозащищенное кодирование с использованием кода Хемминга, что гарантирует большую вероятность приема достоверной информации на приемной стороне.
1. Тутевич В.Н. Телемеханика. - М.: Высш. школа, 1985. - 423 с.
2. Пшеничников А.М., Портнов М.Л. Телемеханические системы на интегральных микросхемах. - М.: Энергия, 1977. - 296 с.
3. Интегральные микросхемы.: Справочник/ под ред. Б.В. Тарабрина. - М.: Радио и связь, 1984. - 528 с.
4. Проектирование дискретных устройств на интегральных схемах. Мальцев П.П. и др. - М.; Радио и связь. Справочник. 1990.
5. Б.Г. Федорков, В.А. Телец. Микросхемы ЦАП и АЦП: функционирование, параметры, применение. - М.; Энергоатомиздат, 1990.
Приложение
Временные диаграммы в характерных точках принципиальной схемы