Таблица 1. Характеристики аналоговых стандартов сотовой связи
Характеристика | AMPS | TACS (ETACS) | NMT-450 | NMT-900 | Radlocom-2000 | NTT |
Диапазон частот, МГц | 825-845 870-890 | 935-950 (917-933) 890-905 (872-888) | 453-457.5 463-467,5 | 935-960 890-915 | 424,8-427,9 418,8-421,9 | 925-940 870-885 |
Радиус ячейки, км | 2-20 | 2-20 | 2-45 | 0,5-20,0 | 5-20 | 5-10 |
Число каналов подвижной станции | 666 | 600 (640) | 180 | 1000/1999 | 256 | До 1000 |
Число каналов базовой станции | 96 | 144 | 30 | 30 | - | 120 |
Мощность передатчика базовой станции, Вт | 45 | 50 | 50 | - | - | 25 |
Ширина полосы частот канала, кГц | 30 | 25 | 25 | 25,0/12,5 | 12,5 | 25 |
Время переключения канала на границе ячейки, мс | 250 | 290 | 1250 | 270 | - | 800 |
Максимальная девиация частоты в канале управления,кГц | 8 | 6,4 | 3,5 | 3,5 | - | 4,5 |
Максимальная девиация частоты в речевом канале,кГц | 12 | 9,5 | 5 | 5 | 2,5 | 5 |
Минимальное отношение сигнал/шум, дБ | 10 | 10 | 15 | 15 | - | 15 |
Таблица 2.Характеристики систем сотовой связи
Система сотовой | Коэфициэнт повторения частоты | Число каналов управления | Число каналов передачи речи | Среднее число занятых | Средняя загрузка, Эрл/ячейка | Число вызовов на ячейку в ЧНН |
AMPS | 7 | 21 | 279 | 39.86 | 30,80 | 1208 |
TACS | 7 | 21 | 279 | 39,86 | 30,80 | 1208 |
NMT | 9-12 | 0 | 300 | 33,33-25,00 | 24,93-17,50 | 937-657 |
Эффективность использования аналоговых систем сотовой подвижной связи характеризуется такими параметрами, как число вызовов на ячейку в часы наибольшей нагрузки (ЧНН), средняя загрузка на ячейку и др. (табл.2).
5.Цифровые системы сотовой подвижной связи
Цифровые системы сотовой подвижной связи представляют собой системы второго поколения. По сравнению с аналоговыми системами они предоставляют абонентам больший набор услуг и обеспечивают повышенное качество связи, а также взаимодействие с цифровыми сетями с интеграцией служб (ISDN) и пакетной передачи данных (PDN). Среди этих систем широкое распространение получили те, которые базируются на стандартах GSM (DCS 1800), D-AMPS (ADC), JDC, CDMA.. Сравнительные характеристики стандартов представлены в таблице.
Характеристика | GSM | |||
(DCS1800) | D-AMPS (ADC) | JDC | CDMA | |
Метод доступа | ТDМА | TDMA | TDMA | CDMA |
Количество речевых каналов несущую | 8 | 3 | 3 | 32 |
Рабочий диапазон частот, МГц | 935-960; | |||
890-915 | 824-840 | |||
869-894 | 810-826 ;940-956 1429-1441 ;1447-1489 1501-1513 | 824-840 869-894 | ||
Разнос каналов, кГц | 200 | 30 | 25 | 1250 |
Эквивалентная полоса частот на один разговорный канал, кГц | 25 | 10 | 8,3 | - |
Вид модуляции | 0,3 GMSK | n/4 DQPSK | n/4 DQPSK | QPSK |
Скорость передачи информации, Кбит/с | 270 | 48 | 42 | |
Скорость преобразования речи, Кбит/с | 13 | 8 | 11,2(5,6) | |
Алгоритм преобразования речи | RPE-LTR | VSELP | VSELP | |
Радиус соты, км | 0,5-35,0 | 0,5-20,0 | 0,5-20,0 | 0,5-25,0 |
6.Сотовые телефоны
С тех пор, как системы сотовой подвижной связи начали свое победоносное шествие по странам мира, прошло совсем немного времени. Однако были разработаны различные стандарты и системы связи, а вместе с ними развивалось и оборудование этих систем. Привычные для нас сотовые радиотелефоны имели в начале своего развития огромные размеры и были похожи скорее на радиостанции, чем на телефоны. Но с каждым годом они все более развивались: уменьшались их размер и вес, улучшался дизайн, снижалась стоимость, перед пользователями открывались все новые и новые возможности подвижной связи. На рисунке по казано, как изменялись некоторые пара метры абонентских радиотелефонов и их внешний вид в последние годы. Выбор стандарта сотовой связи однозначно определяет и выбор класса модели радиотелефона. При этом, несмотря на наличие общих черт, модели различаются не только функциональными возможностями, определяемыми стандартом, но и некими устоявшимися традициями их конструирования и внешнего оформления. В пределах каждого класса модели радиотелефоны различаются между собой не только объемом сервисных функций, но часто и параметрами приемопередающих трактов. По этой причине при выборе радиотелефона полезно не только руководствоваться внешним видом, но и иметь некоторое представление о конструкции аппарата и его возможностях. Поэтому перейдем к рассмотрению устройства аналоговых и цифровых радиотелефонов, проанализируем их основные возможности и функции.
Несмотря на многообразие представленных на мировом рынке моделей сотовых радиотелефонов, все они имеют сходную конструкцию. Каждый радиотелефон имеет передающее и приемное устройства, устройства преобразования и воспроизведения речи, устройство контроля и управления, антенну, звонок (зуммер), клавиатуру и дисплей. В зависимости от модели они могут различаться размерами, составом комплектующих элементов, функциональными характеристиками и другими показателями.
В последнее время все фирмы-производители стараются снизить стоимость, улучшить дизайн, уменьшить размеры и повысить эксплуатационные показатели своей продукции. Это достигается за счет более высокой степени интеграции логических и радиотехнических блоков радиотелефонов, внедрения поточных линий их производства (снижение доли ручной сборки), использования последних достижений науки и техники в области связи и приборостроения.
В качестве примера рассмотрим конструкцию радиотелефона ЕН237 фирмы Ericsson. Этот радиотелефон предназначен для работы в аналоговой сотовой системе стандарта ETACS. Он состоит из передней крышки, на которой располагаются клавиатура, дисплей, микрофон и громкоговоритель;
задней крышки, на которой закреплена антенна, и четырехслойной печатной платы, на которой размещены все основные узлы.
Антенна аппарата выполнена в виде спирали, а задняя крышка корпуса используется в качестве противовеса и служит для улучшения излучательной способности антенны. Характеристики такой антенны, несмотря на ее малые геометрические размеры, соответствуют аналогичным характеристикам традиционной полуволновой антенне и не зависят от ее ориентации в пространстве.
На четырехслойной печатной плате (в цифровом радиотелефоне их может быть две) собраны основные узлы. В приемном и передающем блоках полностью исключены намоточные контуры. В приемнике фильтрация сигналов производится с помощью фильтров на поверхностных акустических волнах (ПАВ), которые имеют предельно малые размеры и высокие фильтрующие характеристики по сравнению с традиционными фильтрами, использующими LC-контуры. В передатчике для уменьшения внеполосных излучений используются высокодобротные керамические фильтры. Выходные каскады передатчика выполнены на арсенид-галиевых транзисторах. Для получения необходимых частот передатчика и гетеродинных частот приемника используется синтезатор частот, работой которого управляет блок контроля и управления. Основой последнего является центральный процессор. Все блоки выполнены, главным образом, на микросхемах с низким потреблением энергии и высокими функциональными возможностями. Они включают в себя звуковые фильтры, избирательные усилители для микрофона и громкоговорителя, фазовый модулятор и демодулятор, генератор DTMF-сигналов, блоки автоматического тестирования и управления. На плате установлены разъемы для подключения антенны, внешних устройств, клавиатуры и дисплея. Плата устанавливается на рамку и закрепляется на передней крышке корпуса. Малые размеры платы достигаются за счет использования плотного монтажа, применения бескорпусных радиоэлементов и функциональных узлов - чипов.
Структурная схема радиотелефона аналогового стандарта ETACS представлена на рисунке.
Передающий и приемный блоки выполнены по классической схеме. Приемное устройство представляет собой супергетеродинный приемник с двойным преобразованием частоты. Входной сигнал поступает в полосовой фильтр на ПАВ, выделяющий принимаемый сигнал и ослабляющий помехи. Отфильтрованный сигнал поступает в малошумящий усилитель (МШУ) и после усиления подается в смеситель. На второй вход последнего с синтезатора частот поступает сигнал гетеродина. Полученный сигнал первой промежуточной частоты (45 МГц) поступает в усилитель первой промежуточной частоты УПЧ1 и после усиления фильтруется полосовым фильтром на ПАВ. Отфильтрованный сигнал поступает во второй смеситель. В него же с гетеродина Г поступает сигнал. Полученный в результате гетеродинирования сигнал второй промежуточной частоты c частотой 450 кГц фильтруется полосовым фильтром на ПАВ и усиливается усилителем УПЧ2. Усиленный до необходимого уровня сигнал поступает в фазовый демодулятор, где выделяются сигналы управления и речевой сигнал. Последний поступает в усилитель УНЧ и далее — на громкоговоритель. Сигналы управления обрабатываются процессором CPU.
Аналоговый сигнал, поступающий с микрофона, усиливается усилителем УНЧ до необходимого уровня и поступает в фазовый модулятор. Промодулированный сигнал частотой 90 МГц через полосовой фильтр на ПАВ поступает в смеситель. С выхода смесителя сигнал через полосовой керамический фильтр поступает в усилитель мощности класса С, обеспечивающий максимальный КПД передатчика. Усиленный сигнал через регулятор мощности УМ и полосовой керамический фильтр поступает к антенне. Обработка сигналов управления, опрос клавиатуры, формирование необходимых частот и вывод информации на дисплей происходит под управлением центрального процессора. Синтезатор частоты позволяет получать высокостабильные сигналы частот всего используемого диапазона.