ВВЕДЕНИЕ
Создание радиоэлектронной аппаратуры - весьма сложный процесс, требующий четкой организации работ на всех этапах, начиная с творческого замысла и кончая изготовлением устройства.
В связи с этим встает вопрос об измерении параметров радиоэлементов. Особый интерес представляют автоматизированные измерения.
В данном дипломном проекте реализован способ измерения по А.С. 1317370. Измерения параметров этим способом позволяет возложить все главные аспекты на современную вычислительную технику. В нашем случае ядром комплекса является широко распространенный персональный компьютер класса IBM-PC.
Алгоритм измерения реализует разработанный пакет программ для IBM-PC на языке высокого уровня Pascal.
Из литературных данных [8-9] следует, что выполнение п.п.3.1 ТЗ по существу, представляет развитие методики измерения и технических средств реализованных в процессе разработки в Воронежском Государственном Техническом Университете и изготовления (в НИИПХ г. Москва) тестера Д780. При этом были внедрены А.С.1084709 и 1317370 СССР. А.С.1619209 реализуют алгоритмы по способу А.С.1317370 для четырехполюсных микросхем и может быть реализована в виде съемной измерительной головки.
Использование в качестве ядра комплекса персонального компьютера совместимого с IBM-PC позволяет не только выполнить задачи связанные с измерением и обработкой предварительных результатов, но и решить широкий круг задач в области разработки аналитических макромоделей диодов, всех видов транзисторов и аналоговых микросхем.
Реализация п.п.3.2-3.4 не представляет принципиальных затруднений, но требует существенных затрат материальных и трудовых ресурсов. При этом представляется возможным применить элементную базу общего назначения. Так как стандарт скорости обмена по порту RS-232 составляет 9600 Бод, то использования микроэвм КР1816ВЕ35 позволяет отказаться от специализированных, а следовательно дорогих микросхем последовательного интерфейса.
Таким образом, настоящее ТЗ выполнимо в условиях кафедры МиЭРА.
Элементную базу РЭС, во первых, образуют два обширных класса
элементов: пассивные и активные.
Пассивные радиокомпоненты (ПРК) подразделяются на компоненты общего применения (КОП) и СВЧ компоненты (СВЧК).
В состав ПРК входят:
двухполюсники, в том числе резисторы, конденсаторы, катушки индуктивности, электронные LC фильтры последовательного или параллельного типа, одиночные кварцевые резонаторы;
четырехполюсники: электрические LC фильтры;
акустоэлектронные фильтры на объемныхили ПАВ волнах;
электрические или акустические линии задержки;
пьезоэлектрические трансформаторы и другие устройства, которые имеют одну пару контактов для подключения входного сигнала и другую для подключения нагрузки;
многополюсники: многоотводные электрические и окустоэлектронные линии задержки и фильтры электрических сигналов, многообмоточные узкополосные и широкополостные трансформаторные устройства и т.п.
Состав СВЧК более разнообразен, так как кроме компонентов, выполняющих функции аналогичные функциям ПРК, перечисленным выше, в него входят специфические для СВЧ диапазона двухполюсные и многополюсные компоненты: диоды, волноводные разветвители и ответвители.
Как ПРК так и СВЧК бывают узкополостные и широкополостные,
что накладвает определенную специфику при описании их моделей. С другой стороны, окустоэлектронные устройства, работающие в обычном диапозоне частот (от сотен кГц до десятков МГц) могут быть описанны методами СВЧ диапозона.
Большое разнообразие электронной базы РЭС неизбежно связанно с разнообразием их описаний и методов измерений параметров моделей РЭ.
Двухполюсные ПРК могут быть представлены или в виде эквивалентных схем со средоточенными постоянными (рис.1а,б) или в виде параметров "черного ящика" (рис.3,в).
Модели двухполюсникова) модель резистора без учета индуктивностей выводов; б) модель резистора с учетом индуктивностей выводов; в) модель резистора в виде "черного ящика"Рис.1 |
На повышенных частотах (больше или равно 1 МГц) необходимо учитывать частотную зависимость параметров модели рис.3а,б. Для резисторов, например, коме измерения сопротивления R из-за поверхностного эффекта могут сущестенно проявиться дополнительные потери в выводах или диэлектрическом изоляционном покрытии.Такие измерения учтены в моделях типа рис.3,в. Эти модели с целью анализа физических эффектов, поисхоящих в результате функционирования элемента, можно "просветлить", выразив сущетвенные физические эффекты в виде элементарных элементов. (рис.2).
Возможные способы представления моделейа,б- при емкостном характере двухполюсника; в,г- при индуктивномРис.2 |
Для элементов, работающих в ограниченном, вплодь до единственной частоты, диапозоне частот на параметры могут быть выражены единственными значениями L,R,C эквивалентных элементов, представленных схемами рис.4. Аттестация элемента с помощью схем рис.3а,б расширяет частотный диапозон модели. Описание с помощью "черного ящика" (рис.3в) позволяет получить точное значение параметров при заданных частотах. С другой стороны модели типа рис.1 могут быть представленны в виде
, (1)
или
, (2)
Такие же выражения могут быть использованны для полного сопротивления (Z(w)).
Для измерения параметров радиоэлементов используются следующие принципы, учитывающие особенности подключения объекта и сигналов:
разделение напряжения и тока (для двухполюсников);
сравнение двухполюсника с образцовым в мостовых схемах;
определение резонансной частоты или ее изменения;
изменение напряжений и (или) токов на выходе и входе;
разделение падающих и отраженных волн;
выделение падающих и отраженных волн на входе и выходе;
анализ картины стоячей волны;
сравнение двухполюсника с образцовой мерой в схеме с конечными нагрузками;
сравнение многополюсника с образцовыми мерами в схемах с конечными нагрузками.
Структуры измерителей определяют три основные группы.
В состав первой группы входят измерители параметров элементов со сосредоточенными постоянными :
сопротивлений (отношений напряжения к току);
индуктивности и емкости по комплексным сопротивлениям на известной частоте;
двухполюсников в мостовых схемах переменного и постоянного токов;
резонансной частоты (Q-метры).
Вторую группу образуют измерители СВЧ элементов с распределенными параметрами:
приборы, основанные на анализе стоячей волны в измерительной линии с подвижным зондом или набором фиксированных зондов;
приборы, основанные на разделении и измерении комплексных амплитуд сигналов падающих и отраженных волн направленными ответвителями.
Третью группу составляют устройства реализующие способы сравнения многополюсников с активными или комплексными образцовыми мерами путем анализа векторных отношений комплексных напряжений:
устройства с активными образцовыми нагрузками;
устройства с комплексными образцовыми мерами и конечными, в общем случае, комплексными нагрузками.
Устройства третьей группы просты по структуре и могут использоваться для измерения как элементов со сосредоточенными так и с распределенными постоянными. Отсутствие каких-либо подстроечных операций позволяет реализовать комплексную автоматизацию на основе ПК. Это машинно-ориентированные устройства. Это практически универсальные устройства, которые позволяют на одной технологической установке реализовать измерение широкой номенклатуры элементов (пассивные двухполюсники, активные двухполюсники, диоды, стабилитроны, варикапы и т.п.; транзисторы любой структуры, операционные усилители; СВЧ двух и многополюсные устройства).
Большинство приборов всех групп состоит из источника сигнала, схемы подключения образца-измерительной головки (ИГ) и разделения сигналов. При измерении полных характеристик объекта (полное сопротивление или комплексные матрицы) применяется измеритель векторных отношений.
Измерения производятся на постоянном токе или в рабочем диапазоне частот. Простейшим методом для измерения двухполюсников
является схема омметра (рис.3а).
Схемы измерения полного сопротивления по измеренным напряжениям и току Рис.3 |
В режиме короткого замыкания контактов 1 и 2 регулировкой резистора R устанавливают максимальное калиброванное значение тока
. (3)
Значения измеряемого сопротивления Rx расчитывают по уменьшению тока
, (4)
где I - уменьшение тока, отсчитываемое от уровня Imax kal.
Шкала амперметра градуируется в омах. Источники напряжения и индикатор могут работать на постоянном и переменном токе.
При использовании источника напряжения (рис.3б) измеряемый ток обратно-пропорционален модулю полного сопротивления объекта. В этом случае представляется возможным определить индуктивность или емкость элемента по формулам