Смекни!
smekni.com

Создание измерительного аппаратно-программного комплекса термометра на основе микроконтроллеров семьи ATMEGA (стр. 2 из 4)

1-проводная шина оперирует с TTL-уровнями, т.е. логическая единица представлена уровнем напряжения около 5В, а логический ноль – напряжением вблизи 0В. В исходном состоянии на линии присутствует уровень логической единицы, который обеспечивается подтягивающим резистором номиналом около 5Ком.

Инициатором обмена по 1-проводной шине всегда выступает мастер. Все пересылки начинаются с процесса инициализации. Инициализация производится в следующей последовательности

Мастер посылает импульс сброса (resetpulse) - сигнал низкого уровня длительностью не менее 480 мкс.

За импульсом сброса следует ответ подчиненного устройства (presencepulse) - сигнал низкого уровня длительностью 60 - 240 мкс, который генерируется через 15 - 60 мкс после завершения импульса сброса.

Ответ подчиненного устройства даёт мастеру понять, что на шине присутствует термометр и он готов к обмену. После того, как мастер обнаружил ответ, он может передать термометру одну из команд. Передача ведётся путём формирования мастером специальных временных интервалов (timeslots). Каждый временной интервал служит для передачи одного бита. Первым передаётся младший бит. Интервал начинается импульсом низкого уровня, длительность которого лежит в пределах 1 - 15 мкс. Поскольку переход из единицы в ноль менее чувствителен к ёмкости шины (он формируется открытым транзистором, в то время как переход из ноля в единицу формируется подтягивающим резистором), именно этот переход используют 1-проводные устройства для синхронизации с мастером. В подчиненном устройстве запускается схема временной задержки, которая определяет момент считывания данных. Номинальное значение задержки равно 30 мкс, однако, оно может колебаться в пределах 15 - 60 мкс. За импульсом низкого уровня следует передаваемый бит. Он должен удерживаться мастером на шине в течение 60 - 120 мкс от начала интервала. Временной интервал завершается переводом шины в состояние высокого уровня на время не менее 1 мкс. Нужно отметить, что ограничение на это время сверху не накладывается. Аналогичным образом формируются временные интервалы для всех передаваемых битов

Первой командой, которую должен передать мастер для DS18S20 после инициализации, является одна из команд функций ПЗУ. Всего DS18S20 имеет 5 команд функций ПЗУ:

ReadROM [33h]. Эта команда позволяет прочитать содержимое ПЗУ. В ответ на эту команду DS18S20 передает 8-битный код семейства (10h), затем 48-битный серийный номер, а затем 8-битную CRC для проверки правильности принятой информации.

MatchROM [55h]. Эта команда позволяет адресовать на шине конкретный термометр. После этой команды мастер должен передать нужный 64-битный код, и только тот термометр, который имеет такой код, будет «откликаться» до следующего импульса сброса.

SkipROM [CCh]. Эта команда позволяет пропустить процедуру сравнения серийного номера и тем самым сэкономить время в системах, где на шине имеется всего одно устройство.

SearchROM [F0h]. Эта довольно сложная в использовании команда позволяет определить серийные номера всех термометров, присутствующих на шине.

AlarmSearch [ECh]. Эта команда аналогична предыдущей, но «откликаться» будут только те термометры, у которых результат последнего измерения температуры выходит за предустановленные пределы TH и TL.

Поскольку у нас всего одно устройство, наиболее подходящей для нас функцией является функция SkipROM. Кроме неё ещё может быть полезной функция ReadROM, которая позволяет идентифицировать подключенное на шину устройство по его коду семейства и серийному номеру.

Приняв команду ReadROM, DS18S20 будет готов передать 64-битный код, который мастер должен принять.

При приеме данных от подчиненного устройства временные интервалы для принимаемых битов тоже формирует мастер. Интервал начинается импульсом низкого уровня длительностью 1 - 15 мкс. Затем мастер должен освободить шину, чтобы дать возможность термометру вывести бит данных. По переходу из единицы в ноль DS18S20 выводит на шину бит данных и запускает схему временной задержки, которая определяет, как долго бит данных будет присутствовать на шине. Это время лежит в пределах 15 - 60 мкс. Для того чтобы данные на шине, которая всегда обладает некоторой ёмкостью, гарантированно установились, требуется некоторое время. Поэтому момент считывания данных мастером должен отстоять как можно дальше, но не более чем на 15 мкс от начала временного интервала

Прием байта начинается с младшего бита. Вначале идет байт кода семейства. За кодом семейства идет 6 байт серийного номера, начиная с младшего. Затем идет байт контрольной суммы (CRC). В вычислении байта контрольной суммы принимают участие первые 7 байт, или 56 передаваемых бит. Для вычисления используется следующий полином:

CRC = X8+X5+X4+1

После приема данных мастер должен вычислить контрольную сумму и сравнить получившееся значение с переданной CRC. Если эти значения совпадают, значит, прием данных прошел без ошибок. Можно также вычислить контрольную сумму для всех 64 принятых бит, которая в этом случае должна быть равна нулю. Блок-схема алгоритма вычисления контрольной суммы показана на рис. 8. Алгоритм использует операции сдвига и «исключающего или». Квадратиками показаны биты переменной, которая используется для вычисления CRC. Перед вычислением её необходимо обнулить, а затем на вход алгоритма нужно последовательно подать 56 принятых бит в том порядке, в котором они были приняты. В результате переменная будет содержать значение CRC.

Такой же алгоритм вычисления контрольной суммы используется и в случае чтения промежуточного ОЗУ, только там считанная из термометра CRC (9-й байт) рассчитана для 8-ми байтов данных.

После обработки одной из команд функций ПЗУ, DS18S20 способен воспринимать еще несколько команд:

WriteScratchpad [4Eh]. Эта команда позволяет записать данные в промежуточное ОЗУ DS18S20.

ReadScratchpad [BEh]. Эта команда позволяет считать данные из промежуточного ОЗУ.

CopyScratchpad [48h]. Эта команда копирует байты TH и TL из промежуточного ОЗУ в энергонезависимую память. Эта операция требует около 10мс.

ConvertT [44h]. Эта команда запускает процесс преобразования температуры.

RecallE2 [B8h]. Эта команда действует обратным образом по отношению к команде CopyScratchpad, т.е. она позволяет считать байты TH и TL из энергонезависимой памяти в промежуточное ОЗУ. При включении питания эта команда выполняется автоматически.

ReadPowerSupply [B4h]. Эта команда позволяет проверить, использует ли DS18S20 паразитное питание. Дело в том, что DS18S20 можно подключать всего с помощью двух проводов, в этом случае для питания используется линия данных. Особенности этого режима мы здесь рассматривать не будем.

При использовании DS18S20 только для измерения температуры нужны всего две из этих команд: ConvertT и ReadScratchpad.

Последовательность действий при измерении температуры должна быть следующей:

Посылаем импульс сброса и принимаем ответ термометра.

Посылаем команду SkipROM [CCh].

Посылаем команду ConvertT [44h].

Формируем задержку минимум 750мс.

Посылаем импульс сброса и принимаем ответ термометра.

Посылаем команду SkipROM [CCh].

Посылаем команду ReadScratchpad [BEh].

Читаем данные из промежуточного ОЗУ (8 байт) и CRC.

Проверяем CRC, и если данные считаны верно, вычисляем температуру.

Для подключения DS18S20 к COM-порту компьютера используется адаптер, схема которого приведена на рисунке, где показано окно помощи программы.

Схема этого адаптера не так проста, как, например, схема адаптера DS9097 фирмы Dallas. Это связано в первую очередь с тем, что хотелось иметь общую «землю» компьютера и 1-проводной шины. Для питания DS18S20 используется линия DTR последовательного порта. Адаптер обеспечивает на входе RXD порта компьютера лишь однополярные уровни, что, строго говоря, не соответствует спецификации RS-232C. Однако большинство портов с такими уровнями работают нормально. Вместо указанных на схеме n-канальных МОП-транзисторов можно применить близкие по параметрам транзисторы других типов, например, 2N7000. Подойдут также отечественные транзисторы КП501 или КП505. В принципе, можно применить и биполярные транзисторы, добавив в базы ограничительные резисторы. Конструктивно адаптер выполнен в корпусе разъема D-SUB-25 :

Разъем паяется прямо на плату, которая входит между рядами контактов. Другая сторона платы выполнена удлиненной и выходит за пределы корпуса разъема. В эту часть платы впаян 3-х контактный винтовой терминал

Можно вовсе обойтись без печатной платы, а выполнить монтаж адаптера навесным способом на контактах разъема.

К винтовому терминалу подключается микросхема термометра с помощью проводов, длина которых может составлять до нескольких метров. Если датчик термометра используется в комнатных условиях, то никаких мер по его защите применять не нужно, необходимо только заизолировать выводы. Если же предполагается измерять температуру наружного воздуха или каких-то агрессивных сред, датчик термометра необходимо упаковать. Например, можно взять алюминиевый корпус электролитического конденсатора подходящего диаметра и поместить туда датчик, заполнив весь свободный объем теплопроводящей пастой. Сверху такой стакан необходимо загерметизировать.