Системы подвижной спутниковой связи появились около 30 лет назад, когда на орбиту был выведен геостационарный космический аппарат (КА) Marisat. Первоначально мобильные земные станции (ЗС) разрабатывались как системы специального назначения (морские, воздушные, автомобильные, железнодорожные) и были ориентированы на ограниченное число пользователей. Надежность связи была невысокой, что связано с низкой энерговооруженностью подвижных объектов и проблемами обеспечения устойчивости связи при сложном рельефе местности и малых рабочих углах места. Земные станции первого поколения (стандарт Inmarsat-A) предназначались в основном для создания ведомственных и корпоративных сетей с радиальной (или радиально-узловой) структурой с большими центральными станциями.
Революционные преобразования в области мобильной спутниковой связи произошли в начале 90-х и были обусловлены тремя факторами: коммерциализацией космических программ, использованием низкоорбитальных и средневысотных КА и повсеместным переходом на цифровую связь с использованием цифровых сигнальных процессоров (DSP). Процесс конверсии сопровождался заимствованием и переносом передовых военных технологий в коммерческие программы. В результате были реализованы несколько проектов глобальных систем спутниковой связи с КА на низких орбитах (Indium, Globalstar), средневысотных (ICO), а также две региональные системы (AceS и Thuraya).
Глобальная система персональной спутниковой связи Iridium была введена в эксплуатацию в конце 1998 г. Проработав около полутора лет, она прекратила свое существование. Детальный анализ случившегося еще предстоит, однако уже сейчас ясно, что великолепно задуманный и реализованный технический проект оказался не востребованным массовым рынком. Главные причины — низкий спрос на услуги голосовой связи и просчеты в маркетинговой политике.
На этапе формирования концепции системы (1987 г.), идея портативных спутниковых телефонов и пейджеров выглядела привлекательной и вполне конкурентоспособной. Однорежимные (спутниковые) и двухрежимные (спутниковые/сотовые) абонентские терминалы должны были обеспечить гибкую стратегию предоставления услуг и развертывания системы Iridium.
Однако разработчики проекта Iridium не учли те серьезные изменения, которые произошли в мире за последние годы. Они прежде всего связаны с успехами наземной связи. Новые модификации сотовых телефонов легче и удобнее, а тарифы более привлекательные, чем в спутниковой связи. Кроме того, время работы без подзарядки аккумуляторных батарей в спутниковой связи меньше, а возможности работы из зданий ограничены. Что же касается обслуживания труднодоступных районов и океанов, в которых спутниковая связь не имеет себе альтернативы, то оказалось, что желающих общаться по объявленным тарифам не так уж и много, чтобы окупить эксплуатационные затраты.
В 2000 году начается эксплуатация трех систем: глобальной системы персональной спутниковой связи Globalstar и региональных систем ACeS и Thuraya, ориентированных не только на голосовую связь, но и передачу данных. В 2001 г. введена в эксплуатацию система ICO.
Дальнейшее развитие систем подвижной спутниковой связи будет осуществляться в рамках реализации проектов систем 3-го поколения.
Классификация систем 2-го поколения
В основу предлагаемой классификации систем подвижной радиотелефонной связи 2-го поколения положены три основных признака: назначение системы, метод многостанционного доступа и схема дуплексирования каналов. В зависимости от назначения и размеров зоны обслуживания все системы подвижной связи могут быть разделены на 4 класса (рис.1):
- спутниковые системы связи с зоной обслуживания в одном луче 400-800 км и глобальной зоной обслуживания для одного спутника 3000-8000 км в зависимости от высоты орбиты;
- системы сотовой подвижной радиосвязи с радиусом действия от 0,3 до 35 км;
- транкингозые (профессинальные) системы радиосвязи с радиусом зоны обслуживания от 2 до 50 км в зависимости от высоты подъема антенны;
- системы беспроводного доступа с типовыми размерами соты до 0,3 км.
Различия между системами разных классов, прежде всего, состоят в составе и качестве предоставляемых услуг. Наиболее высокое качество обеспечивают сотовые сети и системы беспроводного доступа, предоставляющие услуги двусторонней радиосвязи в интересах как мобильных, так и стационарных абонентов (телефонные сети общего пользования, ISDN и др.). Аналогичные услуги, но с меньшими возможностями, реализованы в спутниковых системах. Что же касается транкинговых систем, то в них основным видом обслуживания является полудуплексная связь и групповой вызов абонентов.
Рис.1. Классификация систем подвижной связи второго поколения
Размеры соты зависят от плотности абонентов, приходящейся на единицу зоны покрытия, и характера распределения абонентов по обслуживаемой территории. В местах с повышенной плотностью абонентов создаются пикосоты с радиусом до 100 м, а в районах наиболее интенсивной застройки и с высокой плотностью населения организуются микросоты (0,1-0,5 км). Радиус действия макросотовых зон, которые охватывают город и пригородные зоны, не превышает 30-35 км. Что же касается обслуживания абонентов в сельской местности, удаленных и труднодоступных районах, то оно может осуществляться как с использованием наземных сотовых, так и спутниковых систем.
Сотовые сети и системы беспроводного доступа могут обслуживать районы с большой плотностью абонентов до 10000 Эрланг на квадратный километр. Транкинговые сети более эффективны, когда объем трафика не превышает 1-2 Эрл/кв. км. Для повышения спектральной эффективности в сотовых системах используется широкополосная ТDМА или CDMA, в то время как в транкинговых сетях в основном применяются узкополосная TDMA или FDMA.
Другое различие заключается в схеме организации связи. В сотовых системах и системах беспроводного доступа осуществляются индивидуальные вызовы между абонентами. Средняя длительность разговора может достигать несколько минут. Типовой режим работы транкинговых систем основан на передаче коротких вызовов (менее 1 мин), которые могут организовываться как индивидуально, так и через диспетчера. Время установления связи в транкинговых системах небольшое и, как правило, не превышает 0,3 с.
По способу использования частотного ресурса системы подвижной связи разделяются на два класса:
- системы связи с жестко закрепленными за абонентами каналами;
- системы с предоставлением канала по требованию при нахождении абонентов в общей зоне обслуживания.
В системах с фиксированным закреплением каналов обеспечивается высокая оперативность связи. Принцип фиксированного закрепления каналов получил широкое распространение в системах конвенциональной радиосвязи и ряде транкинговых систем. Транкинговые системы второго поколения относятся к системам со свободным доступом. Они позволяют работать на любом канале в пределах выбранной группы частот, причем конкретный канал закрепляется за выделенным ресурсом. В сотовых сетях и системах беспроводного доступа обеспечивается предоставление канала по требованию при нахождении абонентов в одной зоне обслуживания
Использование в системах 2-го поколения новых системных и технических решений позволило улучшить отношение сигнал/шум (Eb/No). Если в аналоговых системах 1-го поколения, отношение Eb/No было равно 17-18 дБ, то в системах 2-го поколения этот показатель уже равен 7-9 дБ
Системы подвижной связи второго поколения имеют ограниченные возможности по наращиванию пропускной способности и видов услуг в рамках выделенного частотного диапазона. Рост их емкости возможен лишь за счет перехода на полускоростные каналы (GSM), использования более эффективных методов модуляции и применения секторных антенн. Секторизация сот в сочетании с использованием спектрально-эффективных методов модуляции позволяет увеличить их пропускную способность, но не более чем в 10 раз.
Организация хэндовера
В системах подвижной сотовой и спутниковой связи важную роль играет метод автоматического переключения вызова на другой канал в момент, когда мобильная станция7 перемешается из соты в соту или переключается с одного спутника на другой. Такой метод получил название хэндовер (от английского handover). При переключении на соседнюю базовую станцию (в наземных системах) или другой луч бортовой антенны (в спутниковых сетях) обычно происходит смена частоты несущей.
Существуют два основных типа хэндовера: жесткий и мягкий. Жесткий алгоритм переключения каналов сопровождается кратковременным прерыванием связи в момент перемещения абонента из соты в соту. Такой метод автоматического переключения канала осуществляется в большинстве систем 2-го поколения, использующих метод TDMA (GSM, IS-136, РDС). Обрыв и восстановление связи воспринимается абонентом как «щелчок» в телефонной трубке, хотя возможно и более длительное прерывание разговора, когда связь с одной базовой станцией прекратилась, а с другой еще не установлена.
Мягкий хэндовер происходит без потери качества связи. Он осуществляется между различными секторами антенны базовой станции в пределах соты (работа на одной несущей частоте). В настоящее время он реализован в таких системах, как CDMA (IS-95) и Globalstar.