Надежность является одним из основных критериев, которым должны удовлетворять современные сети коммутации. Учесть непосредственно показатели надежности в ходе синтеза сети обычно не удается, поэтому, на этапе синтеза необходимые предпосылки для обеспечения надежности закладываются в косвенном виде, например как топологическое требование обеспечения между некоторыми подмножествами пар узлов не менее заданного числа независимых путей (требование v-связности). Получаемые варианты построения сети затем проверяются на соответствие заданным показателям надежности. Если при выбранном числе независимых путей не удается выполнить заданных требований, то повышают степень связности рассматриваемых в процессе синтеза вариантов структуры будущей сети.
Таким образом, задача построения надежной сети сводится к задаче анализа различных вариантов ее структуры по заданным показателям, которые зависят как от надежности ее элементов, так и от способа их взаимного соединения. Наибольшие трудности при расчете обычно сопряжены с учетом способа взаимного соединения элементов (структуры сети), поэтому в дальнейшем основное внимание мы уделим оценке именно структурной надежности.
Элементами сетей коммутации будем считать направления связи, а также технические средства, входящие в состав, узлов коммутации, концентраторов нагрузки и комплексов сетевого доступа абонентов. При этом основными компонентами, показатели надежности которых проектировщик сети изменить не может, являются каналы связи и процессоры. Связь между смежными узлами сети организуется с помощью последовательно и параллельно включенных каналов, а технические средства на узлах связи состоят из последовательно и параллельно включенных процессоров.
Обратимся сначала к определению показателей надежности компонентов сети. Для определения любого из них прежде всего необходимо сформулировать понятие отказа. Несмотря на кажущуюся очевидность этого понятия в ряде случаев его формулировка весьма затруднительна. Возьмем для примера канал связи. Зачастую качество канала ухудшается постепенно, и установить момент, начиная с которого следует констатировать отказ канала, довольно сложно. Более того, отдельные показатели качества канала (например, вероятность искажений) имеют статистическую природу, и требуется некоторое время наблюдения за каналом, прежде чем с определенной уверенностью можно будет объявить канал неисправным. Предположим только, что всегда можно задать некоторое время прерывания связи, по истечении которого канал признается неисправным. Обычно это время лежит в пределах от единиц до десятков секунд и зависит от назначения сети и выбранной системы ее контроля и управления.
Предположим, что понятие отказа сформулировано.
Тогда можно экспериментально определить среднее время пребывания компонента в исправном состоянии Ти и среднее время его восстановления τв. Эти показатели надежности в большой степени зависят от выбранного временя перерыва связи, по истечении которого канал признается неисправным. По этим характеристикам можно определить вероятность того, что компонент находится в исправном состоянии, или его коэффициент готовности
Κг=Tи ∕ (Tи+τв) (2.1)
и коэффициент простоя
Kп=1-Kг=τв ∕ (Tи+ τв). (2.2)
Опыт показывает, что коэффициенты готовности и простоя в значительно меньшей степени зависят от критического времени перерыва связи и, кроме того, допускают обобщения на сеть в целом. Поэтому при оценках структурной надежности в качестве исходных данных примем коэффициенты готовности (простоя) компонентов сети.
При последовательном соединении п компонентов сети, например каналов связи, результирующая цепочка будет исправна только в случае исправности всех ее составляющих. Предполагая независимость отказов последовательно соединенных компонентов, результирующий коэффициент готовности Kгр можно представить в виде
Kгр=
Kгі, (2.3)где Kгі - коэффициент. готовности i-ro компонента.
Для повышения надежности направлений связи и технических средств на узлах связи часто используется параллельное включение п каналов или процессоров, при котором результирующий элемент сети будет исправен, если исправен хотя бы один из входящих в него компонентов. Отказ такого составного элемента наступит лишь в случае отказа всех входящих в его состав компонентов, что случится с вероятностью
Κпэ=
Kпі, (2.4)гдеΚпэ-коэффициент простоя элемента; Kпі-коэффициент простоя i-го компонента. Если
Kпі= Kп, , то Κпэ=Кnп. (2.5)
Формулы (2.4) и (2.5) справедливы лишь в том случае, когда отказы всех рассматриваемых компонентов независимы. Это условие заведомо нарушается, если каналы связи одного направления проходят по одной линии связи или, тем более, находятся в одной системе передачи. Поэтому в дальнейшем будем считать, что все каналы связи каждого направления сети проходят по географически разнесенным линиям связи.
Выражение для результирующего коэффициента простоя элемента Κпэ, состоящего из п параллельно включенных идентичных. компонентов, можно получить и другим способом, пользуясь формулой Энгсета. Действительно, совокупность компонентов. можно рассматривать как п конечных источников, причем заявка на обслуживание - это требование ремонта (восстановления). Для определения коэффициента простоя элемента достаточно определить вероятность того, что все п источников будут находиться на обслуживании. Согласно формуле Энгсета эта вероятность
Κпэ=СnnAn ∕
CniAi, (2.6)где А=τв ∕ Tи. Легко установить эквивалентность выражений (2.6) и (2.5). Действительно,
СnnAn ∕ CniAi= (τв ∕ Tи) n∕ (1-τв ∕ Tи) n= Кnп
Иногда производительности одного компонента недостаточно для нормальной работы элемента сети, и, чтобы обслужить поступающую нагрузку, необходима одновременная работа, но крайней мере, s компонентов. В этом случае элемент сети (например, направление связи) признается неисправным в случае отказа s+1 и более компонентов. Вероятность этого события можно сразу записать как вероятность того, что одновременно s+1 или более источников (компонентов) потребуют обслуживания (восстановления), исходя из формулы Энгсета
Κпэ (s) = CniAi∕ CniAi (2.7)
Если рассматриваемый элемент сети является узлом коммутации, состоящим из п параллельно включенных процессоров, причем минимально необходимую производительность узла могут обеспечить не менее чем s процессоров, то при отказе (s+l) - ro процессора узел коммутации может выключаться и ресурс оставшихся п-s-1 процессоров расходоваться не будет.д.ля нахождения коэффициента простоя такого элемента можно воспользоваться формулой Энгсета и мнемоническим правилом. Согласно этому правилу можно сразу записать коэффициент простоя интересующего нас элемента
Κпэ (s+1) = Cns+1As+1∕ CniAi (2.8)
Здесь в числителе приводится число ситуаций, благоприятных для отказа элемента, а в знаменателе - общее число ситуаций, соответствующих отказу 0, 1,..., s+1 компонентов. Отказ более чем s+1 компонентов здесь не учитывается, так как по условию в этом случае узел коммутации отключается и ресурс оставшихся компонентов не расходуется. В дальнейшем мы уже не будем интересоваться внутренней структурой элементов сети, полагая, что их показатели надежности p=1 - Κпэ определены по одной из приведенных формул.
Современные сети коммутации имеют весьма сложную структуру, которая в общем случае не сводится к последовательно-параллельным соединениям, поэтому для расчета надежности таких сетей нельзя применять методы, рассмотренные в §2.1 Прежде всего необходимо сформулировать критерий отказа сети. Через сеть обменивается информацией большое число пар абонентов, причем часто требуется, чтобы вероятность наличия связи между корреспондентами выделенной пары (r, l) была не менее заданной Рrl. Под наличием связи понимается существование, по крайней мере, одного исправного пути между соответствующими узлами. Конечно, в сложной сети наличие исправного пути еще не гарантирует немедленного установления соединения, так как элементы этого пути могут быть заняты для обмена информацией других корреспондентов. Если, однако, предположить, что термин "наличие связи" относится только к информации высшей категории, доля которой в реальных сетях обычно весьма мала, и элементы любого исправного пути способны обеспечить обмен этой информацией в интересах всех корреспондентов, которые им могут воспользоваться, то возникает возможность рассматривать все пары корреспондентов независимо с точки зрения наличия связи между ними. В элементах сети, производительность которых недостаточна для обслуживания суммарной нагрузки высшей категории, можно предусмотреть согласно (2.7) или (2.8) большее число s рабочих компонентов.