Можно ожидать, что оценка надежности сети с заданной конечной точностью дозволит сократить трудоемкость расчетов в тем большей мере, чем ниже требуемая точность оценки. Действительно, при расчете надежности по совокупности путей добавление каждого следующего пути приводит к увеличению надежности, а при расчете по совокупности сечений добавление каждого следующего сечения приводит к уменьшению структурной надежности, что создает предпосылки для двусторонней оценки структурной надежности с гарантированной точностью по ограниченным наборам путей и сечений. Рассмотрим эту возможность более подробно.
Обозначим через Qμ (r) результат, полученный при перемножении вероятностей отказов 1-Rs первых r из общего числа n путей. Тогда с учетом следующего (r +1) - го пути получим согласно (2.21) уточненную оценку Qμ (r+1):
Qμ (r+1) = Qμ (r) - Rr+1* Qμ (r) (2.25)
Функция Hμ (r) =l - Qμ (r) является монотонно неубывающей с возрастанием r и при r=n дает точное значение H0=Hμ (n). Промежуточные значения Hμ (n) при r<nможно рассматривать, как оценки H0 снизу. Аналогично, исходя из формулы (2.23), можно получить монотонно не возрастающую последовательность Hσ (R+1), которую можно рассматривать, как последовательность оценок H0сверху. Характер зависимости Hμ (r) и Hσ (r) от r представлен на рис.2.5 Опыт показывает, что рассматриваемые зависимости при малых r меняются весьма круто, а с дальнейшим увеличением rочень медленно приближаются к общему пределу H0. Это свойство можно использовать для сокращения трудоемкости оценок надежности с заданной точностью. Действительно, для решения задачи достаточно последовательно просматривать пути μ, пока не выполнится условие Hμ (m) ≥Hminи затем просматривать сечения σ, пока не выполнится условие Hσ (r) ≤Hmin. Если для некоторого mокажется, что Hμ (m) >Hmax, то можно прекратить расчеты и принять решение, что в сети заложена излишняя избыточность, а если для некоторого rокажется, что Hσ (r) <Hmin, то это значит, что требования к надежности сети не выполняются. Число требующих просмотра путей m и сечений r обычно гораздо меньше общего числа путей n и общего числа сечений k (m<<n, k<<r) чем и достигается сокращение трудоемкости оценки. Одновременно гарантируется, что истинное значение надежности сети лежит в заданных пределах Hmin≤H0≤Hmax
Рисунок 2.5 Характер изменения оценок структурной надежности по совокупности путей и сечений
Точность оценки может быть задана в виде допустимых отклонений от истинного значения H-b+a. В этом случае просмотр путей и сечений следует вести до тех пор, пока не выполнится условие. | Hμ (m) - Hσ (r) |≤a+b. В частности, если a=b, то условие прекращения расчетов имеет вид |Hμ (m) - Hσ (r) |≤ ≤2a, а в качестве оценки надежности следует принять величину H= (Hμ (m) - Hσ (r)) /2. В ходе расчетов решения о рассмотрении на следующем шаге очередного пути или сечения целесообразно принимать по критерию большего абсолютного приращения надежности по соответствующему параметру (m или r).
Пример. Пусть необходимо оценить надежность сети, представленной графом на рис.2.6, с точностью H±0,01. Узлы сети идеально надежны. Линии, обозначенные буквами имеют одинаковую надежность pa=pb=…pk=p=0.9.
Выпишем первые несколько путей и сечений, которые могут потребоваться для расчета:
М' = {аЬс, def, abhf, dgbc... };
S' = {ad, be, cf, age... }.
Полные множества путей Ми сечений S для рассматриваемого метода можно не выписывать. При необходимости, если на начальном подмножестве М', S' но удается достичь необходимой точности, эти подмножества можно будет расширить по ходу расчетов.
Поскольку первые два пути из М' независимы, можно сразу записать на чальную нижнюю оценку вероятности несвязности сети Q (2) μ=abc*def= (1-p3) 2 ≈0,073. Переходя к оценке надежности,H (2) μ=1 - Q (2) μ получаем H (2) μ=0,927. Начальную верхнюю оценку надежности можно получить по первым трем независимым сечениям множества S':
Hσ (3) =ad*be*cf. (2.26)
При рассмотрении сечений запись вида xyz интерпретируется как наличие, по крайней мере, одного исправного элемента в сечении, поэтому при подстановке исходных данных в (2.26) получим Hσ (3) = [l- (1-p) 2] 3≈0,970. Разница между полученными верхней и нижней оценками составляет |Hσ (3) - H (2) μ|=0.044>0.02, поэтому необходимо продолжить расчет.д.обавление следующего пути дает большее абсолютное приращение надежности, чем добавление следующего сечения. Поэтому вводим в рассмотрение очередной путь abhf из множества М' согласно формуле (2.25) Q (3) μ =abc*def-abhfcde= = (l-p3) 2-p4 (1-p) (1-p2). Отсюда получаем очередную оценку надежности снизу. H (3) μ=1 - Q (3) μ≈0,939.
Убеждаемся, что заданная точность еще не достигнута и добавление очередного пути снова даст большее абсолютное приращение надежности, поэтому вводим следующий путь dgbc из множества М' для уточнения нижней границы надежности Q (4) μ =Q (3) μ - dgbcaef=Q (3) μ - p4 (1-p) (l-p2) ≈0,049, что соответствует H (4) μ=1 - Q (4) μ≈0,951.
Рисунок 2.6 - Пример сети для двусторонней оценки надежности
Для разветвленных сетей связи использование предлагаемого метода позволяет значительно сократить трудоемкость расчетов по сравнению с методом полного перебора путей или сечений. При этом метод гарантирует любой заданный уровень точности оценки вероятности связности сети.
Широко распространенным методом оценки надежности сложных технических систем является метод статистических испытаний. Однако для получения статистически достоверных результатов, особенно при высокой исходной надежности элементов системы и ее большой структурной избыточности, требуются значительные затраты машинного времени.
Опыт показывает, что основные затраты времени при статистических испытаниях сложной системы сопряжены с проверкой ее работоспособности в каждой реализации. При высокой исходной надежности pi элементов или большой структурной, избыточности, характерной для разветвленных сетей коммутации, проверка на работоспособность подавляющего большинства реализации дает положительный результат, что обусловливает их малую информативность. Поэтому возникает естественное желание найти некоторое преобразование сети, позволяющее искусственно уменьшить исходную надежность ее элементов, чтобы быстрее набрать необходимую статистику отказов и получить обратное преобразование, позволяющее пересчитывать получаемые результаты на реальные показатели надежности элементов сети. Покажем, что такая возможность действительно существует.
Назовем разрезом подмножество элементов системы, удаление которых приводит к потере работоспособности. Рассмотрим некоторый разрез u, в который входит ровно z элементов. Частота выпадения такого разреза при статистических испытаниях стремится по ходу испытаний к ее вероятности:
Pu= pi (1-pj).
Если обозначить через N общее число элементов сети, то вероятность Рu можно записать в виде
Pu= ( pi) (1-pj) /pj.
Изменим исходные показатели надежности системы таким образом, чтобы каждый сомножитель (1-pi) /pj второго произведения увеличился в γ раз. Другими словами, вместо элемента с надежностью pj введем элемент с надежностью p'j такой, чтобы удовлетворялось условие
(1-p'j) /p'j=γ (1-pj) /pj (2.27)
При этом из (2.27) надежность нового элемента
p'j= pj [pj+ γ (1 - pj)] -1 (2.28) '
Если произвести преобразование (2.27) для всех элементов сети, то вероятность выпадения разреза u в процессе испытаний изменится и составит