Запишем передаточную функцию разомкнутой системы:
. (1)Передаточная функция замкнутой системы имеет вид:
.Характеристическое уравнение замкнутой системы:
(2)Корни характеристического уравнения (2):
Характеристическое уравнение (2) имеет два правых корня, следовательно, данная замкнутая система неустойчива.
Для характеристического уравнения (2) замкнутой системы коэффициенты ai, i=0..3,
а0=0.00008,
a1=0.0078,
a2= – 0.03,
a3=48.
Необходимым условием устойчивости системы является:
ai>0, i=0..3
Данное условие не выполняется (a2<0), следовательно, замкнутая система неустойчива.
Используя передаточную функцию разомкнутой системы (1) запишем характеристическое уравнение разомкнутой системы:
. (3)Найдем корни характеристического уравнения (3):
Характеристическое уравнение разомкнутой системы (3) имеет один правый корень, следовательно, разомкнутая система неустойчива.
Построим годограф Найквиста. Для этого определим частотную передаточную функцию разомкнутой системы и ее действительную и мнимую части.
(4) (5) (6)Используя выражения (5) и (6), заполним таблицу:
Таблица 1.3.1
w | 0 | - | - | ∞ |
P | -48 | 0 | - | 0 |
Q | 0 | - | 0 | 0 |
Построим годограф Найквиста (Рис. 1.3.1):
Рис. 1.3.1
Для случая, когда разомкнутая система неустойчива критерий Найквиста звучит следующим образом: для устойчивости замкнутой системы необходимо и достаточно, чтобы годограф Найквиста охватывал особую точку (
; ) в положительном направлении на угол , где l – число правых корней характеристического уравнения разомкнутой системы.Число правых корней характеристического уравнения разомкнутой системы (3) равно единице (l=1), полученный годограф не охватывает особую точку (-1, j0) на угол lπ=π (годограф охватывает особую точку в направлении по часовой стрелке), следовательно, критерий Найквиста не выполняется и система неустойчива.
Построим ЛЧХ заданной системы, для этого определим расчетные выражения для L(w) и φ(w):
Для построения асимптотической ЛАЧХ найдем параметры:
ЛФЧХ системы также можно построить как геометрическую сумму ЛФЧХ отдельных звеньев системы.
Графики расчетных ЛЧХ, построенные по формулам (7) и (8) изображены на рисунке (1.3.2):
Рис. 1.3.2
wср(частота среза) – частота, соответствующая пересечению ЛАЧХ с осью lgw;
wкр(критическая частота) – частота, соответствующая пересечению ЛФЧХ уровня –π;
Система устойчива, если выполняется условие:
wср< wкр
Данное условие не выполняется, следовательно, система неустойчива. Аналогичный вывод можно сделать по асимптотической ЛАЧХ и ЛФЧХ системы, построенной как сумма отдельных звеньев, входящих в систему, изображенной на рисунке (1.3.3):
Используя характеристическое уравнение замкнутой системы (2) введем функцию Михайлова:
, где , .Для заданной системы функция Михайлова примет вид:
(9) (10)Графическое изображение функции Михайлова на комплексной плоскости при
называется годографом Михайлова. Для устойчивости системы n-го порядка необходимо и достаточно, чтобы годограф Михайлова начинался на вещественной положительной полуоси и при увеличении частоты до ∞ проходил последовательно в положительном направлении n квадрантов, нигде не обращаясь в ноль.Используя выражения (9) и (10), заполним таблицу:
Таблица 1.3.3
w | 0 | 77,625 | - | ∞ |
X(w) | 47 | 0 | - | -∞ |
Y(w) | 0 | -39,748 | 0 | -∞ |
Построим годограф Михайлова (Рис. 1.3.4):
Рис. 1.3.4
Полученный годограф начинается на вещественной положительной полуоси, проходит 2 квадранта в отрицательном направлении, таким образом, критерий Михайлова не выполняется, следовательно, система неустойчива.
Построим область устойчивости, используя критерий Гурвица.
Запишем характеристическое уравнение замкнутой системы в общем виде:
.Для конкретного случая характеристическое уравнение замкнутой системы имеет вид:
(11)Для устойчивости системы КР должно удовлетворять необходимому условию
Рис. 2.1
Но заметим, что исходный КР удовлетворяет этому условию, и его изменением устойчивости замкнутой системы добиться невозможно, т. к. в ХУ ЗС (2.3) а2<0, и зависит этот коэффициент от постоянных времени.
Построим область устойчивости в плоскости параметра Т2
Необходимое условие устойчивости:
Достаточное условие устойчивости для системы третьего порядка по критерию Гурвица имеет вид:
Учитывая все условия:
Рис. 2.2
Для обеспечения устойчивости системы необходимо ввести корректирующее звено с передаточной функцией вида:
Структурная схема скорректированной системы (Рис. 3.1):
Рис. 3.1
Передаточная функция скорректированной разомкнутой системы имеет вид:
(12)Определим параметр Т из условия обеспечения минимального запаса устойчивости (Lзап=5 дБ).
Запас по амплитуде определяется на критической частоте – частоте, на которой функция φ(w) принимает значение, равное -π
Расчетное выражение для φ(w):