Смекни!
smekni.com

Теория оптимального приема сигналов (стр. 1 из 4)

ТЕОРИЯ ОПТИМАЛЬНОГО ПРИЕМА СИГНАЛОВ

1 Основные положения теории оптимального приема сигналов

Прием сигналов – одна из наиболее сложных теоретических и инженерных задач передачи сообщений. Сложность состоит в том, что в пункте приема сообщения необходимо извлекать из модулированных сигналов-переносчиков, которые в процессе прохождения по линии связи не только ослабляются, но и подвергаются воздействиям различных искажающих факторов и помех.

Весьма желательно располагать методами приема, которые были бы наилучшими (оптимальными) в данных конкретных условиях. Направление, связанное с отысканием таких методов, называется теорией оптимального приема.

Теоретической основой решения задач оптимального приема является теория Байеса.

Пусть некоторая случайная физическая величина, которую назовем причиной, может принимать множество значений(исходов) П с плотностью вероятностей р(П), которая считается априорной(заранее известной). Пусть причина вызывает появление другой случайной величины – следствия С, которое также может принимать множество значений. Плотность вероятностей этих значений зависит от конкретных исходов причины. Поэтому ситуация описывается множеством условных плотностей вероятностей р(С/П).

Статистическим решением называют процедуру, которая состоит в том, чтобы, наблюдая конкретное следствие

, указывать вызвавшую его причину
. Так как наблюдаемое следствие
может быть вызвано любым исходом причины П, то можно определить плотность вероятностей всех возможных исходов, которые могли вызвать данное следствие, т.е. определить функцию р(П/
). Эта функция называется апостериорной (послеопытной, установленной на основе имевшего место опыта или наблюдения) плотностью вероятностей причин.

Основой для принятия статистического решения является теорема Байеса

(1)

где р(С/П) – условная плотность распределения следствий;

р(С) – безусловная плотность распределения следствий С, определяемая как

.

Значение этого интеграла не зависит от П, поскольку интегрирование по этой переменной ведется по всей области ее существования Г.

Из (1) следует, что апостериорная плотность вероятностей причины р(П/С) зависит от априорной плотности вероятностей причины р(П) и условной плотности вероятностей следствий р(С/П). плотность р(С/П) является функцией П, ее называют функцией правдоподобия.

В теории статистических решений показано, что при принятии решения о конкретном значении действовавшей причины

, вызвавшей наблюдаемое (или заданное) следствие
, наименьшую ошибку можно совершить, если выносить решение в пользу того значения причины, при которой условное распределение р(П/
) имеет наибольшее значение. Такое правило принятия решения называется байесовским.

Если априорная плотность р(П) неизвестна, то самое большее, что можно сделать – предположить равномерность ее распределения. Тогда решение будет выноситься в пользу того значения причины

, при котором функция правдоподобия р(С/П) для наблюдаемого следствия
принимает наибольшее значение. Это означает, что такое значение причины считается наиболее правдоподобным среди других возможных значений. Подобная процедура принятия решения называется правилом максимального правдоподобия.

Применим изложенный подход к решению задачи оптимального приема сигналов.

Суть процедуры оптимального приема. Установлено, что между колебаниями и векторами можно установить взаимно-однозначное соответствие. Поэтому вместо колебаний можно рассматривать соответствующие векторы. Исходя из этого, будем считать причиной П случайный вектор х, соответствующий передаваемым сообщениям (или однозначно связанный с ним вектор сигналов s, переносящих эти сообщения), а следствием С – случайный вектор у, соответствующий смеси сигнала шума на входе приемника. С учетом сказанного (1) можно записать либо в виде

(2)

либо в эквивалентном выражению (2) виде

(3)

где x,s,y – векторы в многомерных пространствах, соответствующие сообщениям x(t), сигналам s(t)=s[x(t),t] и входным реализациям y(t)=s(t)+n(t).

При передаче дискретных сообщений множество сообщений x(t) может принимать только конечное число дискретных значений

, которому однозначно соответствует конечное число различающихся сигналов

Оптимальная процедура приема состоит в определении величин р(s/ y) для всех М значений

, сравнения этих величин между собой и выборе наибольшей из них. Значение
, которому соответствует максимальная величина р(
/y)

считается переданным сигналом и в соответствии с этим на выходе приемника воспроизводится сообщение

.

Основная трудность при решении такой задачи связана с нахождением апостериорного распределения р(s/ y). Наиболее детально задача решена для помехи типа гауссовского белого шума и набора сигналов, заранее известных в точке приема. Если при этом все сообщения

равновероятны и независимы, то выражение для р(s/y) можно привести к виду

(4)

где

- односторонняя спектральная плотность мощности белого гауссовского шума;

А – некоторая константа.

Нахождение сигнала

, максимизирующего величину(4) при наблюдении на входе приемника некоторой реализации y(t), эквивалентно минимизации показателя экспоненты. Следовательно, оптимальный приемник должен выносить решение о приеме того сигнала
, при котором функция р(
/ y) достигает максимума, а величина

(5)

соответственно становится минимальной.

Учитывая свойства векторного представления функций времени, от выражения(5), можно перейти к эквивалентному ему выражении.

(6)

Выражение(5) или (6) представляет собой алгоритм работы оптимального приемника дискретных сообщений. Работая по этому алгоритму, оптимальный приемник должен вычислить значения величины

для всех М, используемых в системе сигналов
(где j-1,2,…,М), сравнить их между собой, выбрать наименьшее значение и воспроизвести на выходе соответствующее ему дискретное сообщение.

Иными словами, оптимальный приемник всегда воспроизводит на выходе сообщение, переносимое тем сигналом, к которому наиболее близка входная реализация y(t). В геометрической интерпретации это означает, что оптимальный приемник всегда относит вектор входной реализации y к ближайшему вектору сигнала.

Очевидно, что прием сигналов в присутствии шума может приводить к ошибкам, поскольку вектор входной реализации случаен и с некоторой вероятностью может попасть в любую точку пространства. Допустим, что вектор y, образованный из переданного сигнала

и шума n, попал в точку, наиболее близко расположенную к вектору сигнала
.

Если i=j, то приемник примет правильное решение, если же

, то решение приемника окажется ошибочным и вместо переданного сообщения
он ошибочно воспроизведет сообщение
.

Несмотря на то, что оптимальный приемник дискретных сообщений может допускать ошибочные решения, их вероятность у этого приемника минимальна по сравнению с любыми реальными приемниками таких сообщений.

Исследования показывают, что алгоритм может быть представлен в более удобном для схемной реализации виде и позволяет получить структурные схемы оптимальных приемников и выражения для расчета помехоустойчивости.